Skip to Content
OpenStax Logo
Anatomy and Physiology

26.5 Disorders of Acid-Base Balance

Anatomy and Physiology26.5 Disorders of Acid-Base Balance
  1. Preface
  2. Unit 1: Levels of Organization
    1. 1 An Introduction to the Human Body
      1. Introduction
      2. 1.1 Overview of Anatomy and Physiology
      3. 1.2 Structural Organization of the Human Body
      4. 1.3 Functions of Human Life
      5. 1.4 Requirements for Human Life
      6. 1.5 Homeostasis
      7. 1.6 Anatomical Terminology
      8. 1.7 Medical Imaging
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    2. 2 The Chemical Level of Organization
      1. Introduction
      2. 2.1 Elements and Atoms: The Building Blocks of Matter
      3. 2.2 Chemical Bonds
      4. 2.3 Chemical Reactions
      5. 2.4 Inorganic Compounds Essential to Human Functioning
      6. 2.5 Organic Compounds Essential to Human Functioning
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    3. 3 The Cellular Level of Organization
      1. Introduction
      2. 3.1 The Cell Membrane
      3. 3.2 The Cytoplasm and Cellular Organelles
      4. 3.3 The Nucleus and DNA Replication
      5. 3.4 Protein Synthesis
      6. 3.5 Cell Growth and Division
      7. 3.6 Cellular Differentiation
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
    4. 4 The Tissue Level of Organization
      1. Introduction
      2. 4.1 Types of Tissues
      3. 4.2 Epithelial Tissue
      4. 4.3 Connective Tissue Supports and Protects
      5. 4.4 Muscle Tissue and Motion
      6. 4.5 Nervous Tissue Mediates Perception and Response
      7. 4.6 Tissue Injury and Aging
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
  3. Unit 2: Support and Movement
    1. 5 The Integumentary System
      1. Introduction
      2. 5.1 Layers of the Skin
      3. 5.2 Accessory Structures of the Skin
      4. 5.3 Functions of the Integumentary System
      5. 5.4 Diseases, Disorders, and Injuries of the Integumentary System
      6. Key Terms
      7. Chapter Review
      8. Interactive Link Questions
      9. Review Questions
      10. Critical Thinking Questions
    2. 6 Bone Tissue and the Skeletal System
      1. Introduction
      2. 6.1 The Functions of the Skeletal System
      3. 6.2 Bone Classification
      4. 6.3 Bone Structure
      5. 6.4 Bone Formation and Development
      6. 6.5 Fractures: Bone Repair
      7. 6.6 Exercise, Nutrition, Hormones, and Bone Tissue
      8. 6.7 Calcium Homeostasis: Interactions of the Skeletal System and Other Organ Systems
      9. Key Terms
      10. Chapter Review
      11. Review Questions
      12. Critical Thinking Questions
    3. 7 Axial Skeleton
      1. Introduction
      2. 7.1 Divisions of the Skeletal System
      3. 7.2 The Skull
      4. 7.3 The Vertebral Column
      5. 7.4 The Thoracic Cage
      6. 7.5 Embryonic Development of the Axial Skeleton
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    4. 8 The Appendicular Skeleton
      1. Introduction
      2. 8.1 The Pectoral Girdle
      3. 8.2 Bones of the Upper Limb
      4. 8.3 The Pelvic Girdle and Pelvis
      5. 8.4 Bones of the Lower Limb
      6. 8.5 Development of the Appendicular Skeleton
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    5. 9 Joints
      1. Introduction
      2. 9.1 Classification of Joints
      3. 9.2 Fibrous Joints
      4. 9.3 Cartilaginous Joints
      5. 9.4 Synovial Joints
      6. 9.5 Types of Body Movements
      7. 9.6 Anatomy of Selected Synovial Joints
      8. 9.7 Development of Joints
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    6. 10 Muscle Tissue
      1. Introduction
      2. 10.1 Overview of Muscle Tissues
      3. 10.2 Skeletal Muscle
      4. 10.3 Muscle Fiber Contraction and Relaxation
      5. 10.4 Nervous System Control of Muscle Tension
      6. 10.5 Types of Muscle Fibers
      7. 10.6 Exercise and Muscle Performance
      8. 10.7 Cardiac Muscle Tissue
      9. 10.8 Smooth Muscle
      10. 10.9 Development and Regeneration of Muscle Tissue
      11. Key Terms
      12. Chapter Review
      13. Interactive Link Questions
      14. Review Questions
      15. Critical Thinking Questions
    7. 11 The Muscular System
      1. Introduction
      2. 11.1 Interactions of Skeletal Muscles, Their Fascicle Arrangement, and Their Lever Systems
      3. 11.2 Naming Skeletal Muscles
      4. 11.3 Axial Muscles of the Head, Neck, and Back
      5. 11.4 Axial Muscles of the Abdominal Wall, and Thorax
      6. 11.5 Muscles of the Pectoral Girdle and Upper Limbs
      7. 11.6 Appendicular Muscles of the Pelvic Girdle and Lower Limbs
      8. Key Terms
      9. Chapter Review
      10. Review Questions
      11. Critical Thinking Questions
  4. Unit 3: Regulation, Integration, and Control
    1. 12 The Nervous System and Nervous Tissue
      1. Introduction
      2. 12.1 Basic Structure and Function of the Nervous System
      3. 12.2 Nervous Tissue
      4. 12.3 The Function of Nervous Tissue
      5. 12.4 The Action Potential
      6. 12.5 Communication Between Neurons
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    2. 13 Anatomy of the Nervous System
      1. Introduction
      2. 13.1 The Embryologic Perspective
      3. 13.2 The Central Nervous System
      4. 13.3 Circulation and the Central Nervous System
      5. 13.4 The Peripheral Nervous System
      6. Key Terms
      7. Chapter Review
      8. Interactive Link Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 14 The Somatic Nervous System
      1. Introduction
      2. 14.1 Sensory Perception
      3. 14.2 Central Processing
      4. 14.3 Motor Responses
      5. Key Terms
      6. Chapter Review
      7. Interactive Link Questions
      8. Review Questions
      9. Critical Thinking Questions
    4. 15 The Autonomic Nervous System
      1. Introduction
      2. 15.1 Divisions of the Autonomic Nervous System
      3. 15.2 Autonomic Reflexes and Homeostasis
      4. 15.3 Central Control
      5. 15.4 Drugs that Affect the Autonomic System
      6. Key Terms
      7. Chapter Review
      8. Interactive Link Questions
      9. Review Questions
      10. Critical Thinking Questions
    5. 16 The Neurological Exam
      1. Introduction
      2. 16.1 Overview of the Neurological Exam
      3. 16.2 The Mental Status Exam
      4. 16.3 The Cranial Nerve Exam
      5. 16.4 The Sensory and Motor Exams
      6. 16.5 The Coordination and Gait Exams
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    6. 17 The Endocrine System
      1. Introduction
      2. 17.1 An Overview of the Endocrine System
      3. 17.2 Hormones
      4. 17.3 The Pituitary Gland and Hypothalamus
      5. 17.4 The Thyroid Gland
      6. 17.5 The Parathyroid Glands
      7. 17.6 The Adrenal Glands
      8. 17.7 The Pineal Gland
      9. 17.8 Gonadal and Placental Hormones
      10. 17.9 The Endocrine Pancreas
      11. 17.10 Organs with Secondary Endocrine Functions
      12. 17.11 Development and Aging of the Endocrine System
      13. Key Terms
      14. Chapter Review
      15. Interactive Link Questions
      16. Review Questions
      17. Critical Thinking Questions
  5. Unit 4: Fluids and Transport
    1. 18 The Cardiovascular System: Blood
      1. Introduction
      2. 18.1 An Overview of Blood
      3. 18.2 Production of the Formed Elements
      4. 18.3 Erythrocytes
      5. 18.4 Leukocytes and Platelets
      6. 18.5 Hemostasis
      7. 18.6 Blood Typing
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
    2. 19 The Cardiovascular System: The Heart
      1. Introduction
      2. 19.1 Heart Anatomy
      3. 19.2 Cardiac Muscle and Electrical Activity
      4. 19.3 Cardiac Cycle
      5. 19.4 Cardiac Physiology
      6. 19.5 Development of the Heart
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
    3. 20 The Cardiovascular System: Blood Vessels and Circulation
      1. Introduction
      2. 20.1 Structure and Function of Blood Vessels
      3. 20.2 Blood Flow, Blood Pressure, and Resistance
      4. 20.3 Capillary Exchange
      5. 20.4 Homeostatic Regulation of the Vascular System
      6. 20.5 Circulatory Pathways
      7. 20.6 Development of Blood Vessels and Fetal Circulation
      8. Key Terms
      9. Chapter Review
      10. Interactive Link Questions
      11. Review Questions
      12. Critical Thinking Questions
    4. 21 The Lymphatic and Immune System
      1. Introduction
      2. 21.1 Anatomy of the Lymphatic and Immune Systems
      3. 21.2 Barrier Defenses and the Innate Immune Response
      4. 21.3 The Adaptive Immune Response: T lymphocytes and Their Functional Types
      5. 21.4 The Adaptive Immune Response: B-lymphocytes and Antibodies
      6. 21.5 The Immune Response against Pathogens
      7. 21.6 Diseases Associated with Depressed or Overactive Immune Responses
      8. 21.7 Transplantation and Cancer Immunology
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
  6. Unit 5: Energy, Maintenance, and Environmental Exchange
    1. 22 The Respiratory System
      1. Introduction
      2. 22.1 Organs and Structures of the Respiratory System
      3. 22.2 The Lungs
      4. 22.3 The Process of Breathing
      5. 22.4 Gas Exchange
      6. 22.5 Transport of Gases
      7. 22.6 Modifications in Respiratory Functions
      8. 22.7 Embryonic Development of the Respiratory System
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    2. 23 The Digestive System
      1. Introduction
      2. 23.1 Overview of the Digestive System
      3. 23.2 Digestive System Processes and Regulation
      4. 23.3 The Mouth, Pharynx, and Esophagus
      5. 23.4 The Stomach
      6. 23.5 The Small and Large Intestines
      7. 23.6 Accessory Organs in Digestion: The Liver, Pancreas, and Gallbladder
      8. 23.7 Chemical Digestion and Absorption: A Closer Look
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
    3. 24 Metabolism and Nutrition
      1. Introduction
      2. 24.1 Overview of Metabolic Reactions
      3. 24.2 Carbohydrate Metabolism
      4. 24.3 Lipid Metabolism
      5. 24.4 Protein Metabolism
      6. 24.5 Metabolic States of the Body
      7. 24.6 Energy and Heat Balance
      8. 24.7 Nutrition and Diet
      9. Key Terms
      10. Chapter Review
      11. Review Questions
      12. Critical Thinking Questions
    4. 25 The Urinary System
      1. Introduction
      2. 25.1 Physical Characteristics of Urine
      3. 25.2 Gross Anatomy of Urine Transport
      4. 25.3 Gross Anatomy of the Kidney
      5. 25.4 Microscopic Anatomy of the Kidney
      6. 25.5 Physiology of Urine Formation
      7. 25.6 Tubular Reabsorption
      8. 25.7 Regulation of Renal Blood Flow
      9. 25.8 Endocrine Regulation of Kidney Function
      10. 25.9 Regulation of Fluid Volume and Composition
      11. 25.10 The Urinary System and Homeostasis
      12. Key Terms
      13. Chapter Review
      14. Review Questions
      15. Critical Thinking Questions
    5. 26 Fluid, Electrolyte, and Acid-Base Balance
      1. Introduction
      2. 26.1 Body Fluids and Fluid Compartments
      3. 26.2 Water Balance
      4. 26.3 Electrolyte Balance
      5. 26.4 Acid-Base Balance
      6. 26.5 Disorders of Acid-Base Balance
      7. Key Terms
      8. Chapter Review
      9. Interactive Link Questions
      10. Review Questions
      11. Critical Thinking Questions
  7. Unit 6: Human Development and the Continuity of Life
    1. 27 The Reproductive System
      1. Introduction
      2. 27.1 Anatomy and Physiology of the Male Reproductive System
      3. 27.2 Anatomy and Physiology of the Female Reproductive System
      4. 27.3 Development of the Male and Female Reproductive Systems
      5. Key Terms
      6. Chapter Review
      7. Interactive Link Questions
      8. Review Questions
      9. Critical Thinking Questions
    2. 28 Development and Inheritance
      1. Introduction
      2. 28.1 Fertilization
      3. 28.2 Embryonic Development
      4. 28.3 Fetal Development
      5. 28.4 Maternal Changes During Pregnancy, Labor, and Birth
      6. 28.5 Adjustments of the Infant at Birth and Postnatal Stages
      7. 28.6 Lactation
      8. 28.7 Patterns of Inheritance
      9. Key Terms
      10. Chapter Review
      11. Interactive Link Questions
      12. Review Questions
      13. Critical Thinking Questions
  8. References
  9. Index
By the end of this section, you will be able to:
  • Identify the three blood variables considered when making a diagnosis of acidosis or alkalosis
  • Identify the source of compensation for blood pH problems of a respiratory origin
  • Identify the source of compensation for blood pH problems of a metabolic/renal origin

Normal arterial blood pH is restricted to a very narrow range of 7.35 to 7.45. A person who has a blood pH below 7.35 is considered to be in acidosis (actually, “physiological acidosis,” because blood is not truly acidic until its pH drops below 7), and a continuous blood pH below 7.0 can be fatal. Acidosis has several symptoms, including headache and confusion, and the individual can become lethargic and easily fatigued (Figure 26.18). A person who has a blood pH above 7.45 is considered to be in alkalosis, and a pH above 7.8 is fatal. Some symptoms of alkalosis include cognitive impairment (which can progress to unconsciousness), tingling or numbness in the extremities, muscle twitching and spasm, and nausea and vomiting. Both acidosis and alkalosis can be caused by either metabolic or respiratory disorders.

As discussed earlier in this chapter, the concentration of carbonic acid in the blood is dependent on the level of CO2 in the body and the amount of CO2 gas exhaled through the lungs. Thus, the respiratory contribution to acid-base balance is usually discussed in terms of CO2 (rather than of carbonic acid). Remember that a molecule of carbonic acid is lost for every molecule of CO2 exhaled, and a molecule of carbonic acid is formed for every molecule of CO2 retained.

This figure points out the symptoms of acidosis and alkalosis on a silhouette of a human torso. The effects of acidosis on the central nervous system include headache, sleepiness, confusion, loss of consciousness and coma. The effects of acidosis are given on the left side of the diagram. The effects of acidosis on the respiratory system include shortness of breath and coughing. The effects of acidosis on the heart include arrhythmia and increased heart rate. The effects of acidosis on the muscular system include seizures and weakness. The effects of acidosis on the digestive system include nausea, vomiting and diarrhea. The right side of the diagram describes the symptoms of alkalosis. The effects of alkalosis on the central nervous system include confusion, light-headedness, stupor, and coma. The effects of alkalosis on the peripheral nervous system include hand tremor and numbness or tingling in the face, hands, and feet. The effects of alkalosis on the muscular system include twitching and prolonged spasms.  The effects of alkalosis on the digestive system include nausea and vomiting.
Figure 26.18 Symptoms of Acidosis and Alkalosis Symptoms of acidosis affect several organ systems. Both acidosis and alkalosis can be diagnosed using a blood test.

Metabolic Acidosis: Primary Bicarbonate Deficiency

Metabolic acidosis occurs when the blood is too acidic (pH below 7.35) due to too little bicarbonate, a condition called primary bicarbonate deficiency. At the normal pH of 7.40, the ratio of bicarbonate to carbonic acid buffer is 20:1. If a person’s blood pH drops below 7.35, then he or she is in metabolic acidosis. The most common cause of metabolic acidosis is the presence of organic acids or excessive ketones in the blood. Table 26.2 lists some other causes of metabolic acidosis.

Common Causes of Metabolic Acidosis and Blood Metabolites
Cause Metabolite
Diarrhea Bicarbonate
Uremia Phosphoric, sulfuric, and lactic acids
Diabetic ketoacidosis Increased ketones
Strenuous exercise Lactic acid
Methanol Formic acid*
Paraldehyde β-Hydroxybutyric acid*
Isopropanol Propionic acid*
Ethylene glycol Glycolic acid, and some oxalic and formic acids*
Salicylate/aspirin Sulfasalicylic acid (SSA)*
Table 26.2 *Acid metabolites from ingested chemical.

The first three of the eight causes of metabolic acidosis listed are medical (or unusual physiological) conditions. Strenuous exercise can cause temporary metabolic acidosis due to the production of lactic acid. The last five causes result from the ingestion of specific substances. The active form of aspirin is its metabolite, sulfasalicylic acid. An overdose of aspirin causes acidosis due to the acidity of this metabolite. Metabolic acidosis can also result from uremia, which is the retention of urea and uric acid. Metabolic acidosis can also arise from diabetic ketoacidosis, wherein an excess of ketones is present in the blood. Other causes of metabolic acidosis are a decrease in the excretion of hydrogen ions, which inhibits the conservation of bicarbonate ions, and excessive loss of bicarbonate ions through the gastrointestinal tract due to diarrhea.

Metabolic Alkalosis: Primary Bicarbonate Excess

Metabolic alkalosis is the opposite of metabolic acidosis. It occurs when the blood is too alkaline (pH above 7.45) due to too much bicarbonate (called primary bicarbonate excess).

A transient excess of bicarbonate in the blood can follow ingestion of excessive amounts of bicarbonate, citrate, or antacids for conditions such as stomach acid reflux—known as heartburn. Cushing’s disease, which is the chronic hypersecretion of adrenocorticotrophic hormone (ACTH) by the anterior pituitary gland, can cause chronic metabolic alkalosis. The oversecretion of ACTH results in elevated aldosterone levels and an increased loss of potassium by urinary excretion. Other causes of metabolic alkalosis include the loss of hydrochloric acid from the stomach through vomiting, potassium depletion due to the use of diuretics for hypertension, and the excessive use of laxatives.

Respiratory Acidosis: Primary Carbonic Acid/CO2 Excess

Respiratory acidosis occurs when the blood is overly acidic due to an excess of carbonic acid, resulting from too much CO2 in the blood. Respiratory acidosis can result from anything that interferes with respiration, such as pneumonia, emphysema, or congestive heart failure.

Respiratory Alkalosis: Primary Carbonic Acid/CO2 Deficiency

Respiratory alkalosis occurs when the blood is overly alkaline due to a deficiency in carbonic acid and CO2 levels in the blood. This condition usually occurs when too much CO2 is exhaled from the lungs, as occurs in hyperventilation, which is breathing that is deeper or more frequent than normal. An elevated respiratory rate leading to hyperventilation can be due to extreme emotional upset or fear, fever, infections, hypoxia, or abnormally high levels of catecholamines, such as epinephrine and norepinephrine. Surprisingly, aspirin overdose—salicylate toxicity—can result in respiratory alkalosis as the body tries to compensate for initial acidosis.

Interactive Link

Watch this video to see a demonstration of the effect altitude has on blood pH. What effect does high altitude have on blood pH, and why?

Compensation Mechanisms

Various compensatory mechanisms exist to maintain blood pH within a narrow range, including buffers, respiration, and renal mechanisms. Although compensatory mechanisms usually work very well, when one of these mechanisms is not working properly (like kidney failure or respiratory disease), they have their limits. If the pH and bicarbonate to carbonic acid ratio are changed too drastically, the body may not be able to compensate. Moreover, extreme changes in pH can denature proteins. Extensive damage to proteins in this way can result in disruption of normal metabolic processes, serious tissue damage, and ultimately death.

Respiratory Compensation

Respiratory compensation for metabolic acidosis increases the respiratory rate to drive off CO2 and readjust the bicarbonate to carbonic acid ratio to the 20:1 level. This adjustment can occur within minutes. Respiratory compensation for metabolic alkalosis is not as adept as its compensation for acidosis. The normal response of the respiratory system to elevated pH is to increase the amount of CO2 in the blood by decreasing the respiratory rate to conserve CO2. There is a limit to the decrease in respiration, however, that the body can tolerate. Hence, the respiratory route is less efficient at compensating for metabolic alkalosis than for acidosis.

Metabolic Compensation

Metabolic and renal compensation for respiratory diseases that can create acidosis revolves around the conservation of bicarbonate ions. In cases of respiratory acidosis, the kidney increases the conservation of bicarbonate and secretion of H+ through the exchange mechanism discussed earlier. These processes increase the concentration of bicarbonate in the blood, reestablishing the proper relative concentrations of bicarbonate and carbonic acid. In cases of respiratory alkalosis, the kidneys decrease the production of bicarbonate and reabsorb H+ from the tubular fluid. These processes can be limited by the exchange of potassium by the renal cells, which use a K+-H+ exchange mechanism (antiporter).

Diagnosing Acidosis and Alkalosis

Lab tests for pH, CO2 partial pressure (pCO2), and HCO3can identify acidosis and alkalosis, indicating whether the imbalance is respiratory or metabolic, and the extent to which compensatory mechanisms are working. The blood pH value, as shown in Table 26.3, indicates whether the blood is in acidosis, the normal range, or alkalosis. The pCO2 and total HCO3 values aid in determining whether the condition is metabolic or respiratory, and whether the patient has been able to compensate for the problem. Table 26.3 lists the conditions and laboratory results that can be used to classify these conditions. Metabolic acid-base imbalances typically result from kidney disease, and the respiratory system usually responds to compensate.

Types of Acidosis and Alkalosis
pH pCO2 Total HCO3
Metabolic acidosis N, then ↓
Respiratory acidosis N, then ↑
Metabolic alkalosis N, then↑
Respiratory alkalosis N, then ↓
Table 26.3 Reference values (arterial): pH: 7.35–7.45; pCO2: male: 35–48 mm Hg, female: 32–45 mm Hg; total venous bicarbonate: 22–29 mM. N denotes normal; ↑ denotes a rising or increased value; and ↓ denotes a falling or decreased value.

Metabolic acidosis is problematic, as lower-than-normal amounts of bicarbonate are present in the blood. The pCO2 would be normal at first, but if compensation has occurred, it would decrease as the body reestablishes the proper ratio of bicarbonate and carbonic acid/CO2.

Respiratory acidosis is problematic, as excess CO2 is present in the blood. Bicarbonate levels would be normal at first, but if compensation has occurred, they would increase in an attempt to reestablish the proper ratio of bicarbonate and carbonic acid/CO2.

Alkalosis is characterized by a higher-than-normal pH. Metabolic alkalosis is problematic, as elevated pH and excess bicarbonate are present. The pCO2 would again be normal at first, but if compensation has occurred, it would increase as the body attempts to reestablish the proper ratios of bicarbonate and carbonic acid/CO2.

Respiratory alkalosis is problematic, as CO2 deficiency is present in the bloodstream. The bicarbonate concentration would be normal at first. When renal compensation occurs, however, the bicarbonate concentration in blood decreases as the kidneys attempt to reestablish the proper ratios of bicarbonate and carbonic acid/CO2 by eliminating more bicarbonate to bring the pH into the physiological range.

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/anatomy-and-physiology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/anatomy-and-physiology/pages/1-introduction
Citation information

© Apr 25, 2013 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.