Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Algebra and Trigonometry 2e

Introduction to Polynomial and Rational Functions

Algebra and Trigonometry 2eIntroduction to Polynomial and Rational Functions

Menu
Table of contents
  1. Preface
  2. 1 Prerequisites
    1. Introduction to Prerequisites
    2. 1.1 Real Numbers: Algebra Essentials
    3. 1.2 Exponents and Scientific Notation
    4. 1.3 Radicals and Rational Exponents
    5. 1.4 Polynomials
    6. 1.5 Factoring Polynomials
    7. 1.6 Rational Expressions
    8. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    9. Exercises
      1. Review Exercises
      2. Practice Test
  3. 2 Equations and Inequalities
    1. Introduction to Equations and Inequalities
    2. 2.1 The Rectangular Coordinate Systems and Graphs
    3. 2.2 Linear Equations in One Variable
    4. 2.3 Models and Applications
    5. 2.4 Complex Numbers
    6. 2.5 Quadratic Equations
    7. 2.6 Other Types of Equations
    8. 2.7 Linear Inequalities and Absolute Value Inequalities
    9. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  4. 3 Functions
    1. Introduction to Functions
    2. 3.1 Functions and Function Notation
    3. 3.2 Domain and Range
    4. 3.3 Rates of Change and Behavior of Graphs
    5. 3.4 Composition of Functions
    6. 3.5 Transformation of Functions
    7. 3.6 Absolute Value Functions
    8. 3.7 Inverse Functions
    9. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  5. 4 Linear Functions
    1. Introduction to Linear Functions
    2. 4.1 Linear Functions
    3. 4.2 Modeling with Linear Functions
    4. 4.3 Fitting Linear Models to Data
    5. Chapter Review
      1. Key Terms
      2. Key Concepts
    6. Exercises
      1. Review Exercises
      2. Practice Test
  6. 5 Polynomial and Rational Functions
    1. Introduction to Polynomial and Rational Functions
    2. 5.1 Quadratic Functions
    3. 5.2 Power Functions and Polynomial Functions
    4. 5.3 Graphs of Polynomial Functions
    5. 5.4 Dividing Polynomials
    6. 5.5 Zeros of Polynomial Functions
    7. 5.6 Rational Functions
    8. 5.7 Inverses and Radical Functions
    9. 5.8 Modeling Using Variation
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  7. 6 Exponential and Logarithmic Functions
    1. Introduction to Exponential and Logarithmic Functions
    2. 6.1 Exponential Functions
    3. 6.2 Graphs of Exponential Functions
    4. 6.3 Logarithmic Functions
    5. 6.4 Graphs of Logarithmic Functions
    6. 6.5 Logarithmic Properties
    7. 6.6 Exponential and Logarithmic Equations
    8. 6.7 Exponential and Logarithmic Models
    9. 6.8 Fitting Exponential Models to Data
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  8. 7 The Unit Circle: Sine and Cosine Functions
    1. Introduction to The Unit Circle: Sine and Cosine Functions
    2. 7.1 Angles
    3. 7.2 Right Triangle Trigonometry
    4. 7.3 Unit Circle
    5. 7.4 The Other Trigonometric Functions
    6. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    7. Exercises
      1. Review Exercises
      2. Practice Test
  9. 8 Periodic Functions
    1. Introduction to Periodic Functions
    2. 8.1 Graphs of the Sine and Cosine Functions
    3. 8.2 Graphs of the Other Trigonometric Functions
    4. 8.3 Inverse Trigonometric Functions
    5. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    6. Exercises
      1. Review Exercises
      2. Practice Test
  10. 9 Trigonometric Identities and Equations
    1. Introduction to Trigonometric Identities and Equations
    2. 9.1 Verifying Trigonometric Identities and Using Trigonometric Identities to Simplify Trigonometric Expressions
    3. 9.2 Sum and Difference Identities
    4. 9.3 Double-Angle, Half-Angle, and Reduction Formulas
    5. 9.4 Sum-to-Product and Product-to-Sum Formulas
    6. 9.5 Solving Trigonometric Equations
    7. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    8. Exercises
      1. Review Exercises
      2. Practice Test
  11. 10 Further Applications of Trigonometry
    1. Introduction to Further Applications of Trigonometry
    2. 10.1 Non-right Triangles: Law of Sines
    3. 10.2 Non-right Triangles: Law of Cosines
    4. 10.3 Polar Coordinates
    5. 10.4 Polar Coordinates: Graphs
    6. 10.5 Polar Form of Complex Numbers
    7. 10.6 Parametric Equations
    8. 10.7 Parametric Equations: Graphs
    9. 10.8 Vectors
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  12. 11 Systems of Equations and Inequalities
    1. Introduction to Systems of Equations and Inequalities
    2. 11.1 Systems of Linear Equations: Two Variables
    3. 11.2 Systems of Linear Equations: Three Variables
    4. 11.3 Systems of Nonlinear Equations and Inequalities: Two Variables
    5. 11.4 Partial Fractions
    6. 11.5 Matrices and Matrix Operations
    7. 11.6 Solving Systems with Gaussian Elimination
    8. 11.7 Solving Systems with Inverses
    9. 11.8 Solving Systems with Cramer's Rule
    10. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  13. 12 Analytic Geometry
    1. Introduction to Analytic Geometry
    2. 12.1 The Ellipse
    3. 12.2 The Hyperbola
    4. 12.3 The Parabola
    5. 12.4 Rotation of Axes
    6. 12.5 Conic Sections in Polar Coordinates
    7. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    8. Exercises
      1. Review Exercises
      2. Practice Test
  14. 13 Sequences, Probability, and Counting Theory
    1. Introduction to Sequences, Probability and Counting Theory
    2. 13.1 Sequences and Their Notations
    3. 13.2 Arithmetic Sequences
    4. 13.3 Geometric Sequences
    5. 13.4 Series and Their Notations
    6. 13.5 Counting Principles
    7. 13.6 Binomial Theorem
    8. 13.7 Probability
    9. Chapter Review
      1. Key Terms
      2. Key Equations
      3. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  15. A | Proofs, Identities, and Toolkit Functions
  16. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
  17. Index
A scuba diver is underwater near the wreck of a ship. Directly adjacent to the diver is a large gun with coral or sea plants growing on it.
Whether they think about it in mathematical terms or not, scuba divers must consider the impact of functional relationships in order to remain safe. The gas laws, which are a series of relations and equations that describe the behavior of most gases, play a core role in diving. This diver, near the wreck of a World War II Japanese ocean liner turned troop transport, must remain attentive to gas laws during their dive and as they ascend to the surface. (credit: "Aikoku - Aft Gun": modification of work by montereydiver/flickr)

You don't need to dive very deep to feel the effects of pressure. As a person in their neighborhood pool moves eight, ten, twelve feet down, they often feel pain in their ears as a result of water and air pressure differentials. Pressure plays a much greater role at ocean diving depths.

Scuba and free divers are constantly negotiating the effects of pressure in order to experience enjoyable, safe, and productive dives. Gases in a person's respiratory system and diving apparatus interact according to certain physical properties, which upon discovery and evaluation are collectively known as the gas laws. Some are conceptually simple, such as the inverse relationship regarding pressure and volume, and others are more complex. While their formulas seem more straightforward than many you will encounter in this chapter, the gas laws are generally polynomial expressions.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/algebra-and-trigonometry-2e/pages/1-introduction-to-prerequisites
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/algebra-and-trigonometry-2e/pages/1-introduction-to-prerequisites
Citation information

© Jun 22, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.