Skip to Content
OpenStax Logo
Buy book
  1. Preface
  2. Unit 1. Optics
    1. 1 The Nature of Light
      1. Introduction
      2. 1.1 The Propagation of Light
      3. 1.2 The Law of Reflection
      4. 1.3 Refraction
      5. 1.4 Total Internal Reflection
      6. 1.5 Dispersion
      7. 1.6 Huygens’s Principle
      8. 1.7 Polarization
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 2 Geometric Optics and Image Formation
      1. Introduction
      2. 2.1 Images Formed by Plane Mirrors
      3. 2.2 Spherical Mirrors
      4. 2.3 Images Formed by Refraction
      5. 2.4 Thin Lenses
      6. 2.5 The Eye
      7. 2.6 The Camera
      8. 2.7 The Simple Magnifier
      9. 2.8 Microscopes and Telescopes
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    3. 3 Interference
      1. Introduction
      2. 3.1 Young's Double-Slit Interference
      3. 3.2 Mathematics of Interference
      4. 3.3 Multiple-Slit Interference
      5. 3.4 Interference in Thin Films
      6. 3.5 The Michelson Interferometer
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 4 Diffraction
      1. Introduction
      2. 4.1 Single-Slit Diffraction
      3. 4.2 Intensity in Single-Slit Diffraction
      4. 4.3 Double-Slit Diffraction
      5. 4.4 Diffraction Gratings
      6. 4.5 Circular Apertures and Resolution
      7. 4.6 X-Ray Diffraction
      8. 4.7 Holography
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  3. Unit 2. Modern Physics
    1. 5 Relativity
      1. Introduction
      2. 5.1 Invariance of Physical Laws
      3. 5.2 Relativity of Simultaneity
      4. 5.3 Time Dilation
      5. 5.4 Length Contraction
      6. 5.5 The Lorentz Transformation
      7. 5.6 Relativistic Velocity Transformation
      8. 5.7 Doppler Effect for Light
      9. 5.8 Relativistic Momentum
      10. 5.9 Relativistic Energy
      11. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    2. 6 Photons and Matter Waves
      1. Introduction
      2. 6.1 Blackbody Radiation
      3. 6.2 Photoelectric Effect
      4. 6.3 The Compton Effect
      5. 6.4 Bohr’s Model of the Hydrogen Atom
      6. 6.5 De Broglie’s Matter Waves
      7. 6.6 Wave-Particle Duality
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    3. 7 Quantum Mechanics
      1. Introduction
      2. 7.1 Wave Functions
      3. 7.2 The Heisenberg Uncertainty Principle
      4. 7.3 The Schrӧdinger Equation
      5. 7.4 The Quantum Particle in a Box
      6. 7.5 The Quantum Harmonic Oscillator
      7. 7.6 The Quantum Tunneling of Particles through Potential Barriers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 8 Atomic Structure
      1. Introduction
      2. 8.1 The Hydrogen Atom
      3. 8.2 Orbital Magnetic Dipole Moment of the Electron
      4. 8.3 Electron Spin
      5. 8.4 The Exclusion Principle and the Periodic Table
      6. 8.5 Atomic Spectra and X-rays
      7. 8.6 Lasers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    5. 9 Condensed Matter Physics
      1. Introduction
      2. 9.1 Types of Molecular Bonds
      3. 9.2 Molecular Spectra
      4. 9.3 Bonding in Crystalline Solids
      5. 9.4 Free Electron Model of Metals
      6. 9.5 Band Theory of Solids
      7. 9.6 Semiconductors and Doping
      8. 9.7 Semiconductor Devices
      9. 9.8 Superconductivity
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    6. 10 Nuclear Physics
      1. Introduction
      2. 10.1 Properties of Nuclei
      3. 10.2 Nuclear Binding Energy
      4. 10.3 Radioactive Decay
      5. 10.4 Nuclear Reactions
      6. 10.5 Fission
      7. 10.6 Nuclear Fusion
      8. 10.7 Medical Applications and Biological Effects of Nuclear Radiation
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    7. 11 Particle Physics and Cosmology
      1. Introduction
      2. 11.1 Introduction to Particle Physics
      3. 11.2 Particle Conservation Laws
      4. 11.3 Quarks
      5. 11.4 Particle Accelerators and Detectors
      6. 11.5 The Standard Model
      7. 11.6 The Big Bang
      8. 11.7 Evolution of the Early Universe
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  4. A | Units
  5. B | Conversion Factors
  6. C | Fundamental Constants
  7. D | Astronomical Data
  8. E | Mathematical Formulas
  9. F | Chemistry
  10. G | The Greek Alphabet
  11. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
  12. Index

Check Your Understanding

6.1

Bunsen’s burner

6.2

The wavelength of the radiation maximum decreases with increasing temperature.

6.3

Tα/Tβ=1/30.58,Tα/Tβ=1/30.58, so the star ββ is hotter.

6.4

3.3×10−19J3.3×10−19J

6.5

No, because then ΔE/E10−21ΔE/E10−21

6.6

−0.91−0.91 V; 1040 nm

6.7

h=6.40×10−34J·s=4.0×10−15eV·s;3.5%h=6.40×10−34J·s=4.0×10−15eV·s;3.5%

6.8

(Δλ)min=0m(Δλ)min=0m at a 0°0° angle; 71.0pm+0.5λc=72.215pm71.0pm+0.5λc=72.215pm

6.9

121.5 nm and 91.1 nm; no, these spectral bands are in the ultraviolet

6.10

v2=1.1×106m/s0.0036c;v2=1.1×106m/s0.0036c; L2=2K2=3.4eVL2=2K2=3.4eV

6.11

29 pm

6.12

λ=2πna0=2(3.324Å)=6.648Åλ=2πna0=2(3.324Å)=6.648Å

6.13

λ=2.14pm;λ=2.14pm; K=261.56keVK=261.56keV

6.14

0.052°0.052°

6.15

doubles it

Conceptual Questions

1.

yellow

3.

goes from red to violet through the rainbow of colors

5.

would not differ

7.

human eye does not see IR radiation

9.

No

11.

from the slope

13.

Answers may vary

15.

the particle character

17.

Answers may vary

19.

no; yes

21.

no

23.

right angle

25.

no

27.

They are at ground state.

29.

Answers may vary

31.

increase

33.

for larger n

35.

Yes, the excess of 13.6 eV will become kinetic energy of a free electron.

37.

no

39.

X-rays, best resolving power

41.

proton

43.

negligibly small de Broglie’s wavelengths

45.

to avoid collisions with air molecules

47.

Answers may vary

49.

Answers may vary

51.

yes

53.

yes

Problems

55.

a. 0.81 eV; b. 2.1×1023;2.1×1023; c. 2 min 20 sec

57.

a. 7245 K; b. 3.62 μm

59.

about 3 K

61.

4.835×10184.835×1018 Hz; 0.620 Å

63.

263 nm; no

65.

3.68 eV

67.

4.09 eV

69.

5.54 eV

71.

a. 1.89 eV; b. 459 THz; c. 1.21 V

73.

264 nm; UV

75.

1.95×106m/s1.95×106m/s

77.

1.66×1032kg·m/s1.66×1032kg·m/s

79.

56.21 eV

81.

6.63×1023kg·m/s;6.63×1023kg·m/s; 124 keV

83.

82.9 fm; 15 MeV

85.

(Proof)

87.

Δλ30/Δλ45=45.74%Δλ30/Δλ45=45.74%

89.

121.5 nm

91.

a. 0.661 eV; b. –10.2 eV; c. 1.511 eV

93.

3038 THz

95.

97.33 nm

97.

a. h/π;π; b. 3.4 eV; c. – 6.8 eV; d. – 3.4 eV

99.

n=4n=4

101.

365 nm; UV

103.

no

105.

7

107.

145.5 pm

109.

20 fm; 9 fm

111.

a. 2.103 eV; b. 0.846 nm

113.

80.9 pm

115.

2.21×1019m/s2.21×1019m/s

117.

9.929×10329.929×1032

119.

γ=1060;γ=1060; 0.00124 fm

121.

24.11 V

123.

a. P=2I/c=8.67×10−6N/m2;P=2I/c=8.67×10−6N/m2; b. a=PA/m=8.67×10-4m/s2;a=PA/m=8.67×10-4m/s2; c. 74.91 m/s

125.

x=4.965x=4.965

Additional Problems

127.

7.124×1016W/m37.124×1016W/m3

129.

1.034 eV

131.

5.93×10185.93×1018

133.

387.8 nm

135.

a. 4.02×1015;4.02×1015; b. 0.533 mW

137.

a. 4.02×1015;4.02×1015; b. 0.533 mW; c. 0.644 mA; d. 2.57 ns

139.

a. 0.132 pm; b. 9.39 MeV; c. 0.047 MeV

141.

a. 2 kJ; b. 1.33×105kg·m/s;1.33×105kg·m/s; c. 1.33×105N;1.33×105N; d. yes

143.

a. 0.003 nm; b. 105.56°105.56°

145.

n=3n=3

147.

a. a0/2;a0/2; b. −54.4eV/n2;−54.4eV/n2; c. a0/3,−122.4eV/n2a0/3,−122.4eV/n2

149.

a. 36; b. 18.2 nm; c. UV

151.

396 nm; 5.23 neV

153.

7.3 keV

155.

728 m/s; 1.5μV1.5μV

157.

λ=hc/K(2E0+K)=3.705×1012m,K=100keVλ=hc/K(2E0+K)=3.705×1012m,K=100keV

159.

Δλc(electron)/Δλc(proton)=mp/me=1836Δλc(electron)/Δλc(proton)=mp/me=1836

161.

(Proof)

163.

5.1×1017Hz5.1×1017Hz

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-3/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-3/pages/1-introduction
Citation information

© Sep 29, 2016 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.