Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Table of contents
  1. Preface
  2. Optics
    1. 1 The Nature of Light
      1. Introduction
      2. 1.1 The Propagation of Light
      3. 1.2 The Law of Reflection
      4. 1.3 Refraction
      5. 1.4 Total Internal Reflection
      6. 1.5 Dispersion
      7. 1.6 Huygens’s Principle
      8. 1.7 Polarization
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 2 Geometric Optics and Image Formation
      1. Introduction
      2. 2.1 Images Formed by Plane Mirrors
      3. 2.2 Spherical Mirrors
      4. 2.3 Images Formed by Refraction
      5. 2.4 Thin Lenses
      6. 2.5 The Eye
      7. 2.6 The Camera
      8. 2.7 The Simple Magnifier
      9. 2.8 Microscopes and Telescopes
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    3. 3 Interference
      1. Introduction
      2. 3.1 Young's Double-Slit Interference
      3. 3.2 Mathematics of Interference
      4. 3.3 Multiple-Slit Interference
      5. 3.4 Interference in Thin Films
      6. 3.5 The Michelson Interferometer
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 4 Diffraction
      1. Introduction
      2. 4.1 Single-Slit Diffraction
      3. 4.2 Intensity in Single-Slit Diffraction
      4. 4.3 Double-Slit Diffraction
      5. 4.4 Diffraction Gratings
      6. 4.5 Circular Apertures and Resolution
      7. 4.6 X-Ray Diffraction
      8. 4.7 Holography
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  3. Modern Physics
    1. 5 Relativity
      1. Introduction
      2. 5.1 Invariance of Physical Laws
      3. 5.2 Relativity of Simultaneity
      4. 5.3 Time Dilation
      5. 5.4 Length Contraction
      6. 5.5 The Lorentz Transformation
      7. 5.6 Relativistic Velocity Transformation
      8. 5.7 Doppler Effect for Light
      9. 5.8 Relativistic Momentum
      10. 5.9 Relativistic Energy
      11. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    2. 6 Photons and Matter Waves
      1. Introduction
      2. 6.1 Blackbody Radiation
      3. 6.2 Photoelectric Effect
      4. 6.3 The Compton Effect
      5. 6.4 Bohr’s Model of the Hydrogen Atom
      6. 6.5 De Broglie’s Matter Waves
      7. 6.6 Wave-Particle Duality
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    3. 7 Quantum Mechanics
      1. Introduction
      2. 7.1 Wave Functions
      3. 7.2 The Heisenberg Uncertainty Principle
      4. 7.3 The Schrӧdinger Equation
      5. 7.4 The Quantum Particle in a Box
      6. 7.5 The Quantum Harmonic Oscillator
      7. 7.6 The Quantum Tunneling of Particles through Potential Barriers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 8 Atomic Structure
      1. Introduction
      2. 8.1 The Hydrogen Atom
      3. 8.2 Orbital Magnetic Dipole Moment of the Electron
      4. 8.3 Electron Spin
      5. 8.4 The Exclusion Principle and the Periodic Table
      6. 8.5 Atomic Spectra and X-rays
      7. 8.6 Lasers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    5. 9 Condensed Matter Physics
      1. Introduction
      2. 9.1 Types of Molecular Bonds
      3. 9.2 Molecular Spectra
      4. 9.3 Bonding in Crystalline Solids
      5. 9.4 Free Electron Model of Metals
      6. 9.5 Band Theory of Solids
      7. 9.6 Semiconductors and Doping
      8. 9.7 Semiconductor Devices
      9. 9.8 Superconductivity
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    6. 10 Nuclear Physics
      1. Introduction
      2. 10.1 Properties of Nuclei
      3. 10.2 Nuclear Binding Energy
      4. 10.3 Radioactive Decay
      5. 10.4 Nuclear Reactions
      6. 10.5 Fission
      7. 10.6 Nuclear Fusion
      8. 10.7 Medical Applications and Biological Effects of Nuclear Radiation
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    7. 11 Particle Physics and Cosmology
      1. Introduction
      2. 11.1 Introduction to Particle Physics
      3. 11.2 Particle Conservation Laws
      4. 11.3 Quarks
      5. 11.4 Particle Accelerators and Detectors
      6. 11.5 The Standard Model
      7. 11.6 The Big Bang
      8. 11.7 Evolution of the Early Universe
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  4. A | Units
  5. B | Conversion Factors
  6. C | Fundamental Constants
  7. D | Astronomical Data
  8. E | Mathematical Formulas
  9. F | Chemistry
  10. G | The Greek Alphabet
  11. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
  12. Index

Key Equations

Normalization condition in one dimension P(x=,+)=|Ψ(x,t)|2dx=1P(x=,+)=|Ψ(x,t)|2dx=1
Probability of finding a particle in a narrow interval of position in one dimension (x,x+dx)(x,x+dx) P(x,x+dx)=Ψ*(x,t)Ψ(x,t)dxP(x,x+dx)=Ψ*(x,t)Ψ(x,t)dx
Expectation value of position in one dimension x=Ψ*(x,t)xΨ(x,t)dxx=Ψ*(x,t)xΨ(x,t)dx
Heisenberg’s position-momentum uncertainty principle ΔxΔp2ΔxΔp2
Heisenberg’s energy-time uncertainty principle ΔEΔt2ΔEΔt2
Schrӧdinger’s time-dependent equation 22m2Ψ(x,t)x2+U(x,t)Ψ(x,t)=iΨ(x,t)t22m2Ψ(x,t)x2+U(x,t)Ψ(x,t)=iΨ(x,t)t
General form of the wave function for a time-independent potential in one dimension Ψ(x,t)=ψ(x)eiωtΨ(x,t)=ψ(x)eiωt
Schrӧdinger’s time-independent equation 22md2ψ(x)dx2+U(x)ψ(x)=Eψ(x)22md2ψ(x)dx2+U(x)ψ(x)=Eψ(x)
Schrӧdinger’s equation (free particle) 22m2ψ(x)x2=Eψ(x)22m2ψ(x)x2=Eψ(x)
Allowed energies (particle in box of length L) En=n2π222mL2,n=1,2,3,...En=n2π222mL2,n=1,2,3,...
Stationary states (particle in a box of length L) ψn(x)=2LsinnπxL,n=1,2,3,...ψn(x)=2LsinnπxL,n=1,2,3,...
Potential-energy function of a harmonic oscillator U(x)=12mω2x2U(x)=12mω2x2
Schrӧdinger equation (harmonic oscillator) 22md2ψ(x)dx2+12mω2x2ψ(x)=Eψ(x)22md2ψ(x)dx2+12mω2x2ψ(x)=Eψ(x)
The energy spectrum En=(n+12)ω,n=0,1,2,3,...En=(n+12)ω,n=0,1,2,3,...
The energy wave functions ψn(x)=Nneβ2x2/2Hn(βx),n=0,1,2,3,...ψn(x)=Nneβ2x2/2Hn(βx),n=0,1,2,3,...
Potential barrier U(x)={0,whenx<0U0,when0xL0,whenx>LU(x)={0,whenx<0U0,when0xL0,whenx>L
Definition of the transmission coefficient T(L,E)=|ψtra(x)|2|ψin(x)|2T(L,E)=|ψtra(x)|2|ψin(x)|2
A parameter in the transmission coefficient β2=2m2(U0E)β2=2m2(U0E)
Transmission coefficient, exact T(L,E)=1cosh2βL+(γ/2)2sinh2βLT(L,E)=1cosh2βL+(γ/2)2sinh2βL
Transmission coefficient, approximate T(L,E)=16EU0(1EU0)e2βLT(L,E)=16EU0(1EU0)e2βL
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-3/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-3/pages/1-introduction
Citation information

© Jul 21, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.