Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
University Physics Volume 3

Additional Problems

University Physics Volume 3Additional Problems

Additional Problems

77.

Show that if the uncertainty in the position of a particle is on the order of its de Broglie’s wavelength, then the uncertainty in its momentum is on the order of the value of its momentum.

78.

The mass of a ρρ-meson is measured to be 770MeV/c2770MeV/c2 with an uncertainty of 100MeV/c2100MeV/c2. Estimate the lifetime of this meson.

79.

A particle of mass m is confined to a box of width L. If the particle is in the first excited state, what are the probabilities of finding the particle in a region of width 0.020 L around the given point x: (a) x=0.25Lx=0.25L; (b) x=0.40Lx=0.40L; (c) x=0.75Lx=0.75L; and (d) x=0.90Lx=0.90L.

80.

A particle in a box [0;L] is in the third excited state. What are its most probable positions?

81.

A 0.20-kg billiard ball bounces back and forth without losing its energy between the cushions of a 1.5 m long table. (a) If the ball is in its ground state, how many years does it need to get from one cushion to the other? You may compare this time interval to the age of the universe. (b) How much energy is required to make the ball go from its ground state to its first excited state? Compare it with the kinetic energy of the ball moving at 2.0 m/s.

82.

Find the expectation value of the position squared when the particle in the box is in its third excited state and the length of the box is L.

83.

Consider an infinite square well with wall boundaries x=0x=0 and x=L.x=L. Show that the function ψ(x)=Asinkxψ(x)=Asinkx is the solution to the stationary Schrӧdinger equation for the particle in a box only if k=2mE/.k=2mE/. Explain why this is an acceptable wave function only if k is an integer multiple of π/L.π/L.

84.

Consider an infinite square well with wall boundaries x=0x=0 and x=L.x=L. Explain why the function ψ(x)=Acoskxψ(x)=Acoskx is not a solution to the stationary Schrӧdinger equation for the particle in a box.

85.

Atoms in a crystal lattice vibrate in simple harmonic motion. Assuming a lattice atom has a mass of 9.4×10−26kg9.4×10−26kg, what is the force constant of the lattice if a lattice atom makes a transition from the ground state to first excited state when it absorbs a 525-µm525-µm photon?

86.

A diatomic molecule behaves like a quantum harmonic oscillator with the force constant 12.0 N/m and mass 5.60×10−26kg5.60×10−26kg. (a) What is the wavelength of the emitted photon when the molecule makes the transition from the third excited state to the second excited state? (b) Find the ground state energy of vibrations for this diatomic molecule.

87.

An electron with kinetic energy 2.0 MeV encounters a potential energy barrier of height 16.0 MeV and width 2.00 nm. What is the probability that the electron emerges on the other side of the barrier?

88.

A beam of mono-energetic protons with energy 2.0 MeV falls on a potential energy barrier of height 20.0 MeV and of width 1.5 fm. What percentage of the beam is transmitted through the barrier?

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-3/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-3/pages/1-introduction
Citation information

© Jul 23, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.