Skip to Content
OpenStax Logo
University Physics Volume 3

Conceptual Questions

University Physics Volume 3Conceptual Questions
Buy book
  1. Preface
  2. Unit 1. Optics
    1. 1 The Nature of Light
      1. Introduction
      2. 1.1 The Propagation of Light
      3. 1.2 The Law of Reflection
      4. 1.3 Refraction
      5. 1.4 Total Internal Reflection
      6. 1.5 Dispersion
      7. 1.6 Huygens’s Principle
      8. 1.7 Polarization
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 2 Geometric Optics and Image Formation
      1. Introduction
      2. 2.1 Images Formed by Plane Mirrors
      3. 2.2 Spherical Mirrors
      4. 2.3 Images Formed by Refraction
      5. 2.4 Thin Lenses
      6. 2.5 The Eye
      7. 2.6 The Camera
      8. 2.7 The Simple Magnifier
      9. 2.8 Microscopes and Telescopes
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    3. 3 Interference
      1. Introduction
      2. 3.1 Young's Double-Slit Interference
      3. 3.2 Mathematics of Interference
      4. 3.3 Multiple-Slit Interference
      5. 3.4 Interference in Thin Films
      6. 3.5 The Michelson Interferometer
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 4 Diffraction
      1. Introduction
      2. 4.1 Single-Slit Diffraction
      3. 4.2 Intensity in Single-Slit Diffraction
      4. 4.3 Double-Slit Diffraction
      5. 4.4 Diffraction Gratings
      6. 4.5 Circular Apertures and Resolution
      7. 4.6 X-Ray Diffraction
      8. 4.7 Holography
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  3. Unit 2. Modern Physics
    1. 5 Relativity
      1. Introduction
      2. 5.1 Invariance of Physical Laws
      3. 5.2 Relativity of Simultaneity
      4. 5.3 Time Dilation
      5. 5.4 Length Contraction
      6. 5.5 The Lorentz Transformation
      7. 5.6 Relativistic Velocity Transformation
      8. 5.7 Doppler Effect for Light
      9. 5.8 Relativistic Momentum
      10. 5.9 Relativistic Energy
      11. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    2. 6 Photons and Matter Waves
      1. Introduction
      2. 6.1 Blackbody Radiation
      3. 6.2 Photoelectric Effect
      4. 6.3 The Compton Effect
      5. 6.4 Bohr’s Model of the Hydrogen Atom
      6. 6.5 De Broglie’s Matter Waves
      7. 6.6 Wave-Particle Duality
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    3. 7 Quantum Mechanics
      1. Introduction
      2. 7.1 Wave Functions
      3. 7.2 The Heisenberg Uncertainty Principle
      4. 7.3 The Schrӧdinger Equation
      5. 7.4 The Quantum Particle in a Box
      6. 7.5 The Quantum Harmonic Oscillator
      7. 7.6 The Quantum Tunneling of Particles through Potential Barriers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 8 Atomic Structure
      1. Introduction
      2. 8.1 The Hydrogen Atom
      3. 8.2 Orbital Magnetic Dipole Moment of the Electron
      4. 8.3 Electron Spin
      5. 8.4 The Exclusion Principle and the Periodic Table
      6. 8.5 Atomic Spectra and X-rays
      7. 8.6 Lasers
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    5. 9 Condensed Matter Physics
      1. Introduction
      2. 9.1 Types of Molecular Bonds
      3. 9.2 Molecular Spectra
      4. 9.3 Bonding in Crystalline Solids
      5. 9.4 Free Electron Model of Metals
      6. 9.5 Band Theory of Solids
      7. 9.6 Semiconductors and Doping
      8. 9.7 Semiconductor Devices
      9. 9.8 Superconductivity
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    6. 10 Nuclear Physics
      1. Introduction
      2. 10.1 Properties of Nuclei
      3. 10.2 Nuclear Binding Energy
      4. 10.3 Radioactive Decay
      5. 10.4 Nuclear Reactions
      6. 10.5 Fission
      7. 10.6 Nuclear Fusion
      8. 10.7 Medical Applications and Biological Effects of Nuclear Radiation
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    7. 11 Particle Physics and Cosmology
      1. Introduction
      2. 11.1 Introduction to Particle Physics
      3. 11.2 Particle Conservation Laws
      4. 11.3 Quarks
      5. 11.4 Particle Accelerators and Detectors
      6. 11.5 The Standard Model
      7. 11.6 The Big Bang
      8. 11.7 Evolution of the Early Universe
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  4. A | Units
  5. B | Conversion Factors
  6. C | Fundamental Constants
  7. D | Astronomical Data
  8. E | Mathematical Formulas
  9. F | Chemistry
  10. G | The Greek Alphabet
  11. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
  12. Index

Conceptual Questions

11.1 Introduction to Particle Physics

1.

What are the four fundamental forces? Briefly describe them.

2.

Distinguish fermions and bosons using the concepts of indistiguishability and exchange symmetry.

3.

List the quark and lepton families

4.

Distinguish between elementary particles and antiparticles. Describe their interactions.

11.2 Particle Conservation Laws

5.

What are six particle conservation laws? Briefly describe them.

6.

In general, how do we determine if a particle reaction or decay occurs?

7.

Why might the detection of particle interaction that violates an established particle conservation law be considered a good thing for a scientist?

11.3 Quarks

8.

What are the six known quarks? Summarize their properties.

9.

What is the general quark composition of a baryon? Of a meson?

10.

What evidence exists for the existence of quarks?

11.

Why do baryons with the same quark composition sometimes differ in their rest mass energies?

11.4 Particle Accelerators and Detectors

12.

Briefly compare the Van de Graaff accelerator, linear accelerator, cyclotron, and synchrotron accelerator.

13.

Describe the basic components and function of a typical colliding beam machine.

14.

What are the subdetectors of the Compact Muon Solenoid experiment? Briefly describe them.

15.

What is the advantage of a colliding-beam accelerator over one that fires particles into a fixed target?

16.

An electron appears in the muon detectors of the CMS. How is this possible?

11.5 The Standard Model

17.

What is the Standard Model? Express your answer in terms of the four fundamental forces and exchange particles.

18.

Draw a Feynman diagram to represents annihilation of an electron and positron into a photon.

19.

What is the motivation behind grand unification theories?

20.

If a theory is developed that unifies all four forces, will it still be correct to say that the orbit of the Moon is determined by the gravitational force? Explain why.

21.

If the Higgs boson is discovered and found to have mass, will it be considered the ultimate carrier of the weak force? Explain your response.

22.

One of the common decay modes of the Λ0isΛ0π+p.Λ0isΛ0π+p. Even though only hadrons are involved in this decay, it occurs through the weak nuclear force. How do we know that this decay does not occur through the strong nuclear force?

11.6 The Big Bang

23.

What is meant by cosmological expansion? Express your answer in terms of a Hubble graph and the red shift of distant starlight.

24.

Describe the balloon analogy for cosmological expansion. Explain why it only appears that we are at the center of expansion of the universe.

25.

Distances to local galaxies are determined by measuring the brightness of stars, called Cepheid variables, that can be observed individually and that have absolute brightnesses at a standard distance that are well known. Explain how the measured brightness would vary with distance, as compared with the absolute brightness.

11.7 Evolution of the Early Universe

26.

What is meant by a “cosmological model of the early universe?” Briefly describe this model in terms of the four fundamental forces.

27.

Describe two pieces of evidence that support the Big Bang model.

28.

In what sense are we, as Newton once said, “a boy playing on the sea-shore”? Express your answer in terms of the concepts of dark matter and dark energy.

29.

If some unknown cause of redshift—such as light becoming “tired” from traveling long distances through empty space—is discovered, what effect would that have on cosmology?

30.

In the past, many scientists believed the universe to be infinite. However, if the universe is infinite, then any line of sight should eventually fall on a star’s surface and the night sky should be very bright. How is this paradox resolved in modern cosmology?

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-3/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-3/pages/1-introduction
Citation information

© Sep 29, 2016 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.