Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

A satellite photograph of northeastern China. Clouds cover part of the view. The bottom left part of the image is obscured by smog.
Figure 3.1 A weak cold front of air pushes all the smog in northeastern China into a giant smog blanket over the Yellow Sea, as captured by NASA’s Terra satellite in 2012. To understand changes in weather and climate, such as the event shown here, you need a thorough knowledge of thermodynamics. (credit: modification of work by NASA)

Heat is the transfer of energy due to a temperature difference between two systems. Heat describes the process of converting from one form of energy into another. A car engine, for example, burns gasoline. Heat is produced when the burned fuel is chemically transformed into mostly CO2CO2 and H2O,H2O, which are gases at the combustion temperature. These gases exert a force on a piston through a displacement, doing work and converting the piston’s kinetic energy into a variety of other forms—into the car’s kinetic energy; into electrical energy to run the spark plugs, radio, and lights; and back into stored energy in the car’s battery.

Energy is conserved in all processes, including those associated with thermodynamic systems. The roles of heat transfer and internal energy change vary from process to process and affect how work is done by the system in that process. We will see that the first law of thermodynamics explains that a change in the internal energy of a system comes from changes in heat or work. Understanding the laws that govern thermodynamic processes and the relationship between the system and its surroundings is therefore paramount in gaining scientific knowledge of energy and energy consumption.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
Citation information

© Jul 23, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.