Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Key Terms

henry (H)
unit of inductance, 1H=1Ω·s1H=1Ω·s; it is also expressed as a volt second per ampere
inductance
property of a device that tells how effectively it induces an emf in another device
inductive time constant
denoted by ττ, the characteristic time given by quantity L/R of a particular series RL circuit
inductor
part of an electrical circuit to provide self-inductance, which is symbolized by a coil of wire
LC circuit
circuit composed of an ac source, inductor, and capacitor
magnetic energy density
energy stored per volume in a magnetic field
mutual inductance
geometric quantity that expresses how effective two devices are at inducing emfs in one another
RLC circuit
circuit with an ac source, resistor, inductor, and capacitor all in series.
self-inductance
effect of the device inducing emf in itself
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-2/pages/1-introduction
Citation information

© Jul 23, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.