Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
University Physics Volume 1

E | Mathematical Formulas

University Physics Volume 1E | Mathematical Formulas

Quadratic formula

If ax2+bx+c=0,ax2+bx+c=0, then x=b±b24ac2ax=b±b24ac2a

Triangle of base bb and height hh Area =12bh=12bh
Circle of radius rr Circumference =2πr=2πr Area =πr2=πr2
Sphere of radius rr Surface area =4πr2=4πr2 Volume =43πr3=43πr3
Cylinder of radius rr and height hh Area of curved surface =2πrh=2πrh Volume =πr2h=πr2h
Table E1 Geometry

Trigonometry

Trigonometric Identities

  1. sinθ=1/cscθsinθ=1/cscθ
  2. cosθ=1/secθcosθ=1/secθ
  3. tanθ=1/cotθtanθ=1/cotθ
  4. sin(900θ)=cosθsin(900θ)=cosθ
  5. cos(900θ)=sinθcos(900θ)=sinθ
  6. tan(900θ)=cotθtan(900θ)=cotθ
  7. sin2θ+cos2θ=1sin2θ+cos2θ=1
  8. sec2θtan2θ=1sec2θtan2θ=1
  9. tanθ=sinθ/cosθtanθ=sinθ/cosθ
  10. sin(α±β)=sinαcosβ±cosαsinβsin(α±β)=sinαcosβ±cosαsinβ
  11. cos(α±β)=cosαcosβsinαsinβcos(α±β)=cosαcosβsinαsinβ
  12. tan(α±β)=tanα±tanβ1tanαtanβtan(α±β)=tanα±tanβ1tanαtanβ
  13. sin2θ=2sinθcosθsin2θ=2sinθcosθ
  14. cos2θ=cos2θsin2θ=2cos2θ1=12sin2θcos2θ=cos2θsin2θ=2cos2θ1=12sin2θ
  15. sinα+sinβ=2sin12(α+β)cos12(αβ)sinα+sinβ=2sin12(α+β)cos12(αβ)
  16. cosα+cosβ=2cos12(α+β)cos12(αβ)cosα+cosβ=2cos12(α+β)cos12(αβ)
  17. s=rθs=rθ

Triangles

  1. Law of sines: asinα=bsinβ=csinγasinα=bsinβ=csinγ
  2. Law of cosines: c2=a2+b22abcosγc2=a2+b22abcosγ
    Figure shows a triangle with three dissimilar sides labeled a, b and c. All three angles of the triangle are acute angles. The angle between b and c is alpha, the angle between a and c is beta and the angle between a and b is gamma.
  3. Pythagorean theorem: a2+b2=c2a2+b2=c2
    Figure shows a right triangle. Its three sides are labeled a, b and c with c being the hypotenuse. The angle between a and c is labeled theta.

Series expansions

  1. Binomial theorem: (a+b)n=an+nan1b+n(n1)an2b22!+n(n1)(n2)an3b33!+···(a+b)n=an+nan1b+n(n1)an2b22!+n(n1)(n2)an3b33!+···
  2. (1±x)n=1±nx1!+n(n1)x22!±···(x2<1)(1±x)n=1±nx1!+n(n1)x22!±···(x2<1)
  3. (1±x)n=1nx1!+n(n+1)x22!···(x2<1)(1±x)n=1nx1!+n(n+1)x22!···(x2<1)
  4. sinx=xx33!+x55!···sinx=xx33!+x55!···
  5. cosx=1x22!+x44!···cosx=1x22!+x44!···
  6. tanx=x+x33+2x515+···tanx=x+x33+2x515+···
  7. ex=1+x+x22!+···ex=1+x+x22!+···
  8. ln(1+x)=x12x2+13x3···(|x|<1)ln(1+x)=x12x2+13x3···(|x|<1)

Derivatives

  1. ddx[af(x)]=addxf(x)ddx[af(x)]=addxf(x)
  2. ddx[f(x)+g(x)]=ddxf(x)+ddxg(x)ddx[f(x)+g(x)]=ddxf(x)+ddxg(x)
  3. ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x)ddx[f(x)g(x)]=f(x)ddxg(x)+g(x)ddxf(x)
  4. ddxf(u)=[dduf(u)]dudxddxf(u)=[dduf(u)]dudx
  5. ddxxm=mxm1ddxxm=mxm1
  6. ddxsinx=cosxddxsinx=cosx
  7. ddxcosx=sinxddxcosx=sinx
  8. ddxtanx=sec2xddxtanx=sec2x
  9. ddxcotx=csc2xddxcotx=csc2x
  10. ddxsecx=tanxsecxddxsecx=tanxsecx
  11. ddxcscx=cotxcscxddxcscx=cotxcscx
  12. ddxex=exddxex=ex
  13. ddxlnx=1xddxlnx=1x
  14. ddxsin−1x=11x2ddxsin−1x=11x2
  15. ddxcos−1x=11x2ddxcos−1x=11x2
  16. ddxtan−1x=11+x2ddxtan−1x=11+x2

Integrals

  1. af(x)dx=af(x)dxaf(x)dx=af(x)dx
  2. [f(x)+g(x)]dx=f(x)dx+g(x)dx[f(x)+g(x)]dx=f(x)dx+g(x)dx
  3. xmdx=xm+1m+1(m1)=lnx(m=−1)xmdx=xm+1m+1(m1)=lnx(m=−1)
  4. sinxdx=cosxsinxdx=cosx
  5. cosxdx=sinxcosxdx=sinx
  6. tanxdx=ln|secx|tanxdx=ln|secx|
  7. sin2axdx=x2sin2ax4asin2axdx=x2sin2ax4a
  8. cos2axdx=x2+sin2ax4acos2axdx=x2+sin2ax4a
  9. sinaxcosaxdx=cos2ax4asinaxcosaxdx=cos2ax4a
  10. eaxdx=1aeaxeaxdx=1aeax
  11. xeaxdx=eaxa2(ax1)xeaxdx=eaxa2(ax1)
  12. lnaxdx=xlnaxxlnaxdx=xlnaxx
  13. dxa2+x2=1atan−1xadxa2+x2=1atan−1xa
  14. dxa2x2=12aln|x+axa|dxa2x2=12aln|x+axa|
  15. dxa2+x2=sinh−1xadxa2+x2=sinh−1xa
  16. dxa2x2=sin−1xadxa2x2=sin−1xa
  17. a2+x2dx=x2a2+x2+a22sinh−1xaa2+x2dx=x2a2+x2+a22sinh−1xa
  18. a2x2dx=x2a2x2+a22sin−1xaa2x2dx=x2a2x2+a22sin−1xa
  19. 1(x2+a2)3/2dx=xa2x2+a21(x2+a2)3/2dx=xa2x2+a2
  20. x(x2+a2)3/2dx=1x2+a2x(x2+a2)3/2dx=1x2+a2
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
Citation information

© Sep 30, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.