Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
University Physics Volume 1

Additional Problems

University Physics Volume 1Additional Problems

Additional Problems

71.

You fly 32.0km32.0km in a straight line in still air in the direction 35.0°35.0° south of west. (a) Find the distances you would have to fly due south and then due west to arrive at the same point. (b) Find the distances you would have to fly first in a direction 45.0°45.0° south of west and then in a direction 45.0°45.0° west of north. Note these are the components of the displacement along a different set of axes—namely, the one rotated by 45°45° with respect to the axes in (a).

72.

Rectangular coordinates of a point are given by (2, y) and its polar coordinates are given by (r,π/6)(r,π/6). Find y and r.

73.

If the polar coordinates of a point are (r,φ)(r,φ) and its rectangular coordinates are (x,y)(x,y), determine the polar coordinates of the following points: (a) (−x, y), (b) (−2x, −2y), and (c) (3x, −3y).

74.

Vectors AA and BB have identical magnitudes of 5.0 units. Find the angle between them if A+B=52j^A+B=52j^.

75.

Starting at the island of Moi in an unknown archipelago, a fishing boat makes a round trip with two stops at the islands of Noi and Poi. It sails from Moi for 4.76 nautical miles (nmi) in a direction 37°37° north of east to Noi. From Noi, it sails 69°69° west of north to Poi. On its return leg from Poi, it sails 28°28° east of south. What distance does the boat sail between Noi and Poi? What distance does it sail between Moi and Poi? Express your answer both in nautical miles and in kilometers. Note: 1 nmi = 1852 m.

76.

An air traffic controller notices two signals from two planes on the radar monitor. One plane is at altitude 800 m and in a 19.2-km horizontal distance to the tower in a direction 25°25° south of west. The second plane is at altitude 1100 m and its horizontal distance is 17.6 km and 20°20° south of west. What is the distance between these planes?

77.

Show that when A+B=CA+B=C, then C2=A2+B2+2ABcosφC2=A2+B2+2ABcosφ, where φφ is the angle between vectors AA and BB.

78.

Four force vectors each have the same magnitude f. What is the largest magnitude the resultant force vector may have when these forces are added? What is the smallest magnitude of the resultant? Make a graph of both situations.

79.

A skater glides along a circular path of radius 5.00 m in clockwise direction. When he coasts around one-half of the circle, starting from the west point, find (a) the magnitude of his displacement vector and (b) how far he actually skated. (c) What is the magnitude of his displacement vector when he skates all the way around the circle and comes back to the west point?

80.

A stubborn dog is being walked on a leash by its owner. At one point, the dog encounters an interesting scent at some spot on the ground and wants to explore it in detail, but the owner gets impatient and pulls on the leash with force F=(98.0i^+132.0j^+32.0k^)NF=(98.0i^+132.0j^+32.0k^)N along the leash. (a) What is the magnitude of the pulling force? (b) What angle does the leash make with the vertical?

81.

If the velocity vector of a polar bear is u=(−18.0i^13.0j^)km/hu=(−18.0i^13.0j^)km/h, how fast and in what geographic direction is it heading? Here, i^i^ and j^j^ are directions to geographic east and north, respectively.

82.

Find the scalar components of three-dimensional vectors GG and HH in the following figure and write the vectors in vector component form in terms of the unit vectors of the axes.

Vector G has magnitude 10.0. Its projection in the x y plane is between the positive x and positive y directions, at an angle of 45 degrees from the positive x direction. The angle between vector G and the positive z direction is 60 degrees. Vector H has magnitude 15.0. Its projection in the x y plane is between the negative x and positive y directions, at an angle of 30 degrees from the positive y direction. The angle between vector H and the positive z direction is 450 degrees.
83.

A diver explores a shallow reef off the coast of Belize. She initially swims 90.0 m north, makes a turn to the east and continues for 200.0 m, then follows a big grouper for 80.0 m in the direction 30°30° north of east. In the meantime, a local current displaces her by 150.0 m south. Assuming the current is no longer present, in what direction and how far should she now swim to come back to the point where she started?

84.

A force vector AA has x- and y-components, respectively, of −8.80 units of force and 15.00 units of force. The x- and y-components of force vector BB are, respectively, 13.20 units of force and −6.60 units of force. Find the components of force vector CC that satisfies the vector equation AB+3C=0AB+3C=0.

85.

Vectors AA and BB are two orthogonal vectors in the xy-plane and they have identical magnitudes. If A=3.0i^+4.0j^A=3.0i^+4.0j^, find BB.

86.

For the three-dimensional vectors in the following figure, find (a) G×HG×H, (b) |G×H||G×H|, and (c) G·HG·H.

Vector G has magnitude 10.0. Its projection in the x y plane is between the positive x and positive y directions, at an angle of 45 degrees from the positive x direction. The angle between vector G and the positive z direction is 60 degrees. Vector H has magnitude 15.0. Its projection in the x y plane is between the negative x and positive y directions, at an angle of 30 degrees from the positive y direction. The angle between vector H and the positive z direction is 450 degrees.
87.

Show that (B×C)·A(B×C)·A is the volume of the parallelepiped, with edges formed by the three vectors in the following figure.

Vector G has magnitude 10.0. Its projection in the x y plane is between the positive x and positive y directions, at an angle of 45 degrees from the positive x direction. The angle between vector G and the positive z direction is 60 degrees. Vector H has magnitude 15.0. Its projection in the x y plane is between the negative x and positive y directions, at an angle of 30 degrees from the positive y direction. The angle between vector H and the positive z direction is 450 degrees.
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
Citation information

© Jul 23, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.