Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Key Terms

antinode
location of maximum amplitude in standing waves
constructive interference
when two waves arrive at the same point exactly in phase; that is, the crests of the two waves are precisely aligned, as are the troughs
destructive interference
when two identical waves arrive at the same point exactly out of phase; that is, precisely aligned crest to trough
fixed boundary condition
when the medium at a boundary is fixed in place so it cannot move
free boundary condition
exists when the medium at the boundary is free to move
fundamental frequency
lowest frequency that will produce a standing wave
intensity (I)
power per unit area
interference
overlap of two or more waves at the same point and time
linear wave equation
equation describing waves that result from a linear restoring force of the medium; any function that is a solution to the wave equation describes a wave moving in the positive x-direction or the negative x-direction with a constant wave speed v
longitudinal wave
wave in which the disturbance is parallel to the direction of propagation
mechanical wave
wave that is governed by Newton’s laws and requires a medium
node
point where the string does not move; more generally, nodes are where the wave disturbance is zero in a standing wave
normal mode
possible standing wave pattern for a standing wave on a string
overtone
frequency that produces standing waves and is higher than the fundamental frequency
pulse
single disturbance that moves through a medium, transferring energy but not mass
standing wave
wave that can bounce back and forth through a particular region, effectively becoming stationary
superposition
phenomenon that occurs when two or more waves arrive at the same point
transverse wave
wave in which the disturbance is perpendicular to the direction of propagation
wave
disturbance that moves from its source and carries energy
wave function
mathematical model of the position of particles of the medium
wave number
2πλ2πλ
wave speed
magnitude of the wave velocity
wave velocity
velocity at which the disturbance moves; also called the propagation velocity
wavelength
distance between adjacent identical parts of a wave
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
Citation information

© Sep 30, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.