Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
University Physics Volume 1

Additional Problems

University Physics Volume 1Additional Problems

Menu
Table of contents
  1. Preface
  2. Mechanics
    1. 1 Units and Measurement
      1. Introduction
      2. 1.1 The Scope and Scale of Physics
      3. 1.2 Units and Standards
      4. 1.3 Unit Conversion
      5. 1.4 Dimensional Analysis
      6. 1.5 Estimates and Fermi Calculations
      7. 1.6 Significant Figures
      8. 1.7 Solving Problems in Physics
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 2 Vectors
      1. Introduction
      2. 2.1 Scalars and Vectors
      3. 2.2 Coordinate Systems and Components of a Vector
      4. 2.3 Algebra of Vectors
      5. 2.4 Products of Vectors
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 3 Motion Along a Straight Line
      1. Introduction
      2. 3.1 Position, Displacement, and Average Velocity
      3. 3.2 Instantaneous Velocity and Speed
      4. 3.3 Average and Instantaneous Acceleration
      5. 3.4 Motion with Constant Acceleration
      6. 3.5 Free Fall
      7. 3.6 Finding Velocity and Displacement from Acceleration
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 4 Motion in Two and Three Dimensions
      1. Introduction
      2. 4.1 Displacement and Velocity Vectors
      3. 4.2 Acceleration Vector
      4. 4.3 Projectile Motion
      5. 4.4 Uniform Circular Motion
      6. 4.5 Relative Motion in One and Two Dimensions
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    5. 5 Newton's Laws of Motion
      1. Introduction
      2. 5.1 Forces
      3. 5.2 Newton's First Law
      4. 5.3 Newton's Second Law
      5. 5.4 Mass and Weight
      6. 5.5 Newton’s Third Law
      7. 5.6 Common Forces
      8. 5.7 Drawing Free-Body Diagrams
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    6. 6 Applications of Newton's Laws
      1. Introduction
      2. 6.1 Solving Problems with Newton’s Laws
      3. 6.2 Friction
      4. 6.3 Centripetal Force
      5. 6.4 Drag Force and Terminal Speed
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    7. 7 Work and Kinetic Energy
      1. Introduction
      2. 7.1 Work
      3. 7.2 Kinetic Energy
      4. 7.3 Work-Energy Theorem
      5. 7.4 Power
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    8. 8 Potential Energy and Conservation of Energy
      1. Introduction
      2. 8.1 Potential Energy of a System
      3. 8.2 Conservative and Non-Conservative Forces
      4. 8.3 Conservation of Energy
      5. 8.4 Potential Energy Diagrams and Stability
      6. 8.5 Sources of Energy
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    9. 9 Linear Momentum and Collisions
      1. Introduction
      2. 9.1 Linear Momentum
      3. 9.2 Impulse and Collisions
      4. 9.3 Conservation of Linear Momentum
      5. 9.4 Types of Collisions
      6. 9.5 Collisions in Multiple Dimensions
      7. 9.6 Center of Mass
      8. 9.7 Rocket Propulsion
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    10. 10 Fixed-Axis Rotation
      1. Introduction
      2. 10.1 Rotational Variables
      3. 10.2 Rotation with Constant Angular Acceleration
      4. 10.3 Relating Angular and Translational Quantities
      5. 10.4 Moment of Inertia and Rotational Kinetic Energy
      6. 10.5 Calculating Moments of Inertia
      7. 10.6 Torque
      8. 10.7 Newton’s Second Law for Rotation
      9. 10.8 Work and Power for Rotational Motion
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    11. 11 Angular Momentum
      1. Introduction
      2. 11.1 Rolling Motion
      3. 11.2 Angular Momentum
      4. 11.3 Conservation of Angular Momentum
      5. 11.4 Precession of a Gyroscope
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    12. 12 Static Equilibrium and Elasticity
      1. Introduction
      2. 12.1 Conditions for Static Equilibrium
      3. 12.2 Examples of Static Equilibrium
      4. 12.3 Stress, Strain, and Elastic Modulus
      5. 12.4 Elasticity and Plasticity
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    13. 13 Gravitation
      1. Introduction
      2. 13.1 Newton's Law of Universal Gravitation
      3. 13.2 Gravitation Near Earth's Surface
      4. 13.3 Gravitational Potential Energy and Total Energy
      5. 13.4 Satellite Orbits and Energy
      6. 13.5 Kepler's Laws of Planetary Motion
      7. 13.6 Tidal Forces
      8. 13.7 Einstein's Theory of Gravity
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    14. 14 Fluid Mechanics
      1. Introduction
      2. 14.1 Fluids, Density, and Pressure
      3. 14.2 Measuring Pressure
      4. 14.3 Pascal's Principle and Hydraulics
      5. 14.4 Archimedes’ Principle and Buoyancy
      6. 14.5 Fluid Dynamics
      7. 14.6 Bernoulli’s Equation
      8. 14.7 Viscosity and Turbulence
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  3. Waves and Acoustics
    1. 15 Oscillations
      1. Introduction
      2. 15.1 Simple Harmonic Motion
      3. 15.2 Energy in Simple Harmonic Motion
      4. 15.3 Comparing Simple Harmonic Motion and Circular Motion
      5. 15.4 Pendulums
      6. 15.5 Damped Oscillations
      7. 15.6 Forced Oscillations
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 16 Waves
      1. Introduction
      2. 16.1 Traveling Waves
      3. 16.2 Mathematics of Waves
      4. 16.3 Wave Speed on a Stretched String
      5. 16.4 Energy and Power of a Wave
      6. 16.5 Interference of Waves
      7. 16.6 Standing Waves and Resonance
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 17 Sound
      1. Introduction
      2. 17.1 Sound Waves
      3. 17.2 Speed of Sound
      4. 17.3 Sound Intensity
      5. 17.4 Normal Modes of a Standing Sound Wave
      6. 17.5 Sources of Musical Sound
      7. 17.6 Beats
      8. 17.7 The Doppler Effect
      9. 17.8 Shock Waves
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  4. A | Units
  5. B | Conversion Factors
  6. C | Fundamental Constants
  7. D | Astronomical Data
  8. E | Mathematical Formulas
  9. F | Chemistry
  10. G | The Greek Alphabet
  11. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
  12. Index

Additional Problems

117.

Ultrasound equipment used in the medical profession uses sound waves of a frequency above the range of human hearing. If the frequency of the sound produced by the ultrasound machine is f=30kHz,f=30kHz, what is the wavelength of the ultrasound in bone, if the speed of sound in bone is v=3000m/s?v=3000m/s?

118.

Shown below is the plot of a wave function that models a wave at time t=0.00st=0.00s and t=2.00st=2.00s. The dotted line is the wave function at time t=0.00st=0.00s and the solid line is the function at time t=2.00st=2.00s. Estimate the amplitude, wavelength, velocity, and period of the wave.

Figure shows two transverse waves on a graph whose y values vary from -3 m to 3 m. One wave is shown as a dotted line and is marked t = 0 seconds. It has crests at x approximately equal to 0.25 m and 1.25 m. The other wave is shown as a solid line and is marked t=2 seconds. It has crests at x approximately equal to 0.85 seconds and 1.85 seconds.
119.

The speed of light in air is approximately v=3.00×108m/sv=3.00×108m/s and the speed of light in glass is v=2.00×108m/sv=2.00×108m/s. A red laser with a wavelength of λ=633.00nmλ=633.00nm shines light incident of the glass, and some of the red light is transmitted to the glass. The frequency of the light is the same for the air and the glass. (a) What is the frequency of the light? (b) What is the wavelength of the light in the glass?

120.

A radio station broadcasts radio waves at a frequency of 101.7 MHz. The radio waves move through the air at approximately the speed of light in a vacuum. What is the wavelength of the radio waves?

121.

A sunbather stands waist deep in the ocean and observes that six crests of periodic surface waves pass each minute. The crests are 16.00 meters apart. What is the wavelength, frequency, period, and speed of the waves?

122.

A tuning fork vibrates producing sound at a frequency of 512 Hz. The speed of sound of sound in air is v=343.00m/sv=343.00m/s if the air is at a temperature of 20.00°C20.00°C. What is the wavelength of the sound?

123.

A motorboat is traveling across a lake at a speed of vb=15.00m/s.vb=15.00m/s. The boat bounces up and down every 0.50 s as it travels in the same direction as a wave. It bounces up and down every 0.30 s as it travels in a direction opposite the direction of the waves. What is the speed and wavelength of the wave?

124.

Use the linear wave equation to show that the wave speed of a wave modeled with the wave function y(x,t)=0.20msin(3.00m−1x+6.00s−1t)y(x,t)=0.20msin(3.00m−1x+6.00s−1t) is v=2.00m/s.v=2.00m/s. What are the wavelength and the speed of the wave?

125.

Given the wave functions y1(x,t)=Asin(kxωt)y1(x,t)=Asin(kxωt) and y2(x,t)=Asin(kxωt+ϕ)y2(x,t)=Asin(kxωt+ϕ) with ϕπ2ϕπ2, show that y1(x,t)+y2(x,t)y1(x,t)+y2(x,t) is a solution to the linear wave equation with a wave velocity of v=ωk.v=ωk.

126.

A transverse wave on a string is modeled with the wave function y(x,t)=0.10msin(0.15m−1x+1.50s−1t+0.20)y(x,t)=0.10msin(0.15m−1x+1.50s−1t+0.20). (a) Find the wave velocity. (b) Find the position in the y-direction, the velocity perpendicular to the motion of the wave, and the acceleration perpendicular to the motion of the wave, of a small segment of the string centered at x=0.40mx=0.40m at time t=5.00s.t=5.00s.

127.

A sinusoidal wave travels down a taut, horizontal string with a linear mass density of μ=0.060kg/m.μ=0.060kg/m. The magnitude of maximum vertical acceleration of the wave is aymax=0.90cm/s2aymax=0.90cm/s2 and the amplitude of the wave is 0.40 m. The string is under a tension of FT=600.00NFT=600.00N. The wave moves in the negative x-direction. Write an equation to model the wave.

128.

A transverse wave on a string (μ=0.0030kg/m)(μ=0.0030kg/m) is described with the equation y(x,t)=0.30msin(2π4.00m(x16.00mst)).y(x,t)=0.30msin(2π4.00m(x16.00mst)). What is the tension under which the string is held taut?

129.

A transverse wave on a horizontal string (μ=0.0060kg/m)(μ=0.0060kg/m) is described with the equation y(x,t)=0.30msin(2π4.00m(xvwt)).y(x,t)=0.30msin(2π4.00m(xvwt)). The string is under a tension of 300.00 N. What are the wave speed, wave number, and angular frequency of the wave?

130.

A student holds an inexpensive sonic range finder and uses the range finder to find the distance to the wall. The sonic range finder emits a sound wave. The sound wave reflects off the wall and returns to the range finder. The round trip takes 0.012 s. The range finder was calibrated for use at room temperature T=20°CT=20°C, but the temperature in the room is actually T=23°C.T=23°C. Assuming that the timing mechanism is perfect, what percentage of error can the student expect due to the calibration?

131.

A wave on a string is driven by a string vibrator, which oscillates at a frequency of 100.00 Hz and an amplitude of 1.00 cm. The string vibrator operates at a voltage of 12.00 V and a current of 0.20 A. The power consumed by the string vibrator is P=IVP=IV. Assume that the string vibrator is 90%90% efficient at converting electrical energy into the energy associated with the vibrations of the string. The string is 3.00 m long, and is under a tension of 60.00 N. What is the linear mass density of the string?

132.

A traveling wave on a string is modeled by the wave equation y(x,t)=3.00cmsin(8.00m−1x+100.00s−1t).y(x,t)=3.00cmsin(8.00m−1x+100.00s−1t). The string has a linear mass density of μ=0.00800kg/m.μ=0.00800kg/m. What is the average power transferred by the wave on the string?

133.

A transverse wave on a string has a wavelength of 5.0 m, a period of 0.02 s, and an amplitude of 1.5 cm. The average power transferred by the wave is 5.00 W. What is the tension in the string?

134.

(a) What is the intensity of a laser beam used to burn away cancerous tissue that, when 90.0%90.0% absorbed, puts 500.0 J of energy into a circular spot 2.00 mm in diameter in 4.00 s? (b) Discuss how this intensity compares to the average intensity of sunlight (about 1 kW/m21 kW/m2) and the implications that would have if the laser beam entered your eye. Note how your answer depends on the time duration of the exposure.

135.

Consider two periodic wave functions, y1(x,t)=Asin(kxωt)y1(x,t)=Asin(kxωt) and y2(x,t)=Asin(kxωt+ϕ).y2(x,t)=Asin(kxωt+ϕ). (a) For what values of ϕϕ will the wave that results from a superposition of the wave functions have an amplitude of 2A? (b) For what values of ϕϕ will the wave that results from a superposition of the wave functions have an amplitude of zero?

136.

Consider two periodic wave functions, y1(x,t)=Asin(kxωt)y1(x,t)=Asin(kxωt) and y2(x,t)=Acos(kxωt+ϕ)y2(x,t)=Acos(kxωt+ϕ). (a) For what values of ϕϕ will the wave that results from a superposition of the wave functions have an amplitude of 2A? (b) For what values of ϕϕ will the wave that results from a superposition of the wave functions have an amplitude of zero?

137.

A trough with dimensions 10.00 meters by 0.10 meters by 0.10 meters is partially filled with water. Small-amplitude surface water waves are produced from both ends of the trough by paddles oscillating in simple harmonic motion. The height of the water waves are modeled with two sinusoidal wave equations, y1(x,t)=0.3msin(4m−1x3s−1t)y1(x,t)=0.3msin(4m−1x3s−1t) and y2(x,t)=0.3mcos(4m−1x+3s−1tπ2).y2(x,t)=0.3mcos(4m−1x+3s−1tπ2). What is the wave function of the resulting wave after the waves reach one another and before they reach the end of the trough (i.e., assume that there are only two waves in the trough and ignore reflections)? Use a spreadsheet to check your results. (Hint: Use the trig identities sin(u±v)=sinucosv±cosusinvsin(u±v)=sinucosv±cosusinv and cos(u±v)=cosucosvsinusinv)cos(u±v)=cosucosvsinusinv)

138.

A seismograph records the S- and P-waves from an earthquake 20.00 s apart. If they traveled the same path at constant wave speeds of vS=4.00km/svS=4.00km/s and vP=7.50km/s,vP=7.50km/s, how far away is the epicenter of the earthquake?

139.

Consider what is shown below. A 20.00-kg mass rests on a frictionless ramp inclined at 45°45°. A string with a linear mass density of μ=0.025kg/mμ=0.025kg/m is attached to the 20.00-kg mass. The string passes over a frictionless pulley of negligible mass and is attached to a hanging mass (m). The system is in static equilibrium. A wave is induced on the string and travels up the ramp. (a) What is the mass of the hanging mass (m)? (b) At what wave speed does the wave travel up the string?

Figure shows a slope of 45 degrees going up and right. A mass of 20 kg rests on it. This is supported by a string, which goes over a pulley at the top of the slope. A mass m hangs from it on the other side. A wave is shown in the string.
140.

Consider the superposition of three wave functions y(x,t)=3.00cmsin(2m−1x3s−1t),y(x,t)=3.00cmsin(2m−1x3s−1t), y(x,t)=3.00cmsin(6m−1x+3s−1t),y(x,t)=3.00cmsin(6m−1x+3s−1t), and y(x,t)=3.00cmsin(2m−1x4s−1t).y(x,t)=3.00cmsin(2m−1x4s−1t). What is the height of the resulting wave at position x=3.00mx=3.00m at time t=10.0s?t=10.0s?

141.

A string has a mass of 150 g and a length of 3.4 m. One end of the string is fixed to a lab stand and the other is attached to a spring with a spring constant of ks=100N/m.ks=100N/m. The free end of the spring is attached to another lab pole. The tension in the string is maintained by the spring. The lab poles are separated by a distance that stretches the spring 2.00 cm. The string is plucked and a pulse travels along the string. What is the propagation speed of the pulse?

142.

A standing wave is produced on a string under a tension of 70.0 N by two sinusoidal transverse waves that are identical, but moving in opposite directions. The string is fixed at x=0.00mx=0.00m and x=10.00m.x=10.00m. Nodes appear at x=0.00m,x=0.00m, 2.00 m, 4.00 m, 6.00 m, 8.00 m, and 10.00 m. The amplitude of the standing wave is 3.00 cm. It takes 0.10 s for the antinodes to make one complete oscillation. (a) What are the wave functions of the two sine waves that produce the standing wave? (b) What are the maximum velocity and acceleration of the string, perpendicular to the direction of motion of the transverse waves, at the antinodes?

143.

A string with a length of 4 m is held under a constant tension. The string has a linear mass density of μ=0.006kg/m.μ=0.006kg/m. Two resonant frequencies of the string are 400 Hz and 480 Hz. There are no resonant frequencies between the two frequencies. (a) What are the wavelengths of the two resonant modes? (b) What is the tension in the string?

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
Citation information

© Apr 5, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.