Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
University Physics Volume 1

14.2 Measuring Pressure

University Physics Volume 114.2 Measuring Pressure

Menu
Table of contents
  1. Preface
  2. Mechanics
    1. 1 Units and Measurement
      1. Introduction
      2. 1.1 The Scope and Scale of Physics
      3. 1.2 Units and Standards
      4. 1.3 Unit Conversion
      5. 1.4 Dimensional Analysis
      6. 1.5 Estimates and Fermi Calculations
      7. 1.6 Significant Figures
      8. 1.7 Solving Problems in Physics
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 2 Vectors
      1. Introduction
      2. 2.1 Scalars and Vectors
      3. 2.2 Coordinate Systems and Components of a Vector
      4. 2.3 Algebra of Vectors
      5. 2.4 Products of Vectors
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 3 Motion Along a Straight Line
      1. Introduction
      2. 3.1 Position, Displacement, and Average Velocity
      3. 3.2 Instantaneous Velocity and Speed
      4. 3.3 Average and Instantaneous Acceleration
      5. 3.4 Motion with Constant Acceleration
      6. 3.5 Free Fall
      7. 3.6 Finding Velocity and Displacement from Acceleration
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    4. 4 Motion in Two and Three Dimensions
      1. Introduction
      2. 4.1 Displacement and Velocity Vectors
      3. 4.2 Acceleration Vector
      4. 4.3 Projectile Motion
      5. 4.4 Uniform Circular Motion
      6. 4.5 Relative Motion in One and Two Dimensions
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    5. 5 Newton's Laws of Motion
      1. Introduction
      2. 5.1 Forces
      3. 5.2 Newton's First Law
      4. 5.3 Newton's Second Law
      5. 5.4 Mass and Weight
      6. 5.5 Newton’s Third Law
      7. 5.6 Common Forces
      8. 5.7 Drawing Free-Body Diagrams
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    6. 6 Applications of Newton's Laws
      1. Introduction
      2. 6.1 Solving Problems with Newton’s Laws
      3. 6.2 Friction
      4. 6.3 Centripetal Force
      5. 6.4 Drag Force and Terminal Speed
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    7. 7 Work and Kinetic Energy
      1. Introduction
      2. 7.1 Work
      3. 7.2 Kinetic Energy
      4. 7.3 Work-Energy Theorem
      5. 7.4 Power
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    8. 8 Potential Energy and Conservation of Energy
      1. Introduction
      2. 8.1 Potential Energy of a System
      3. 8.2 Conservative and Non-Conservative Forces
      4. 8.3 Conservation of Energy
      5. 8.4 Potential Energy Diagrams and Stability
      6. 8.5 Sources of Energy
      7. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
    9. 9 Linear Momentum and Collisions
      1. Introduction
      2. 9.1 Linear Momentum
      3. 9.2 Impulse and Collisions
      4. 9.3 Conservation of Linear Momentum
      5. 9.4 Types of Collisions
      6. 9.5 Collisions in Multiple Dimensions
      7. 9.6 Center of Mass
      8. 9.7 Rocket Propulsion
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    10. 10 Fixed-Axis Rotation
      1. Introduction
      2. 10.1 Rotational Variables
      3. 10.2 Rotation with Constant Angular Acceleration
      4. 10.3 Relating Angular and Translational Quantities
      5. 10.4 Moment of Inertia and Rotational Kinetic Energy
      6. 10.5 Calculating Moments of Inertia
      7. 10.6 Torque
      8. 10.7 Newton’s Second Law for Rotation
      9. 10.8 Work and Power for Rotational Motion
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    11. 11 Angular Momentum
      1. Introduction
      2. 11.1 Rolling Motion
      3. 11.2 Angular Momentum
      4. 11.3 Conservation of Angular Momentum
      5. 11.4 Precession of a Gyroscope
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    12. 12 Static Equilibrium and Elasticity
      1. Introduction
      2. 12.1 Conditions for Static Equilibrium
      3. 12.2 Examples of Static Equilibrium
      4. 12.3 Stress, Strain, and Elastic Modulus
      5. 12.4 Elasticity and Plasticity
      6. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    13. 13 Gravitation
      1. Introduction
      2. 13.1 Newton's Law of Universal Gravitation
      3. 13.2 Gravitation Near Earth's Surface
      4. 13.3 Gravitational Potential Energy and Total Energy
      5. 13.4 Satellite Orbits and Energy
      6. 13.5 Kepler's Laws of Planetary Motion
      7. 13.6 Tidal Forces
      8. 13.7 Einstein's Theory of Gravity
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    14. 14 Fluid Mechanics
      1. Introduction
      2. 14.1 Fluids, Density, and Pressure
      3. 14.2 Measuring Pressure
      4. 14.3 Pascal's Principle and Hydraulics
      5. 14.4 Archimedes’ Principle and Buoyancy
      6. 14.5 Fluid Dynamics
      7. 14.6 Bernoulli’s Equation
      8. 14.7 Viscosity and Turbulence
      9. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  3. Waves and Acoustics
    1. 15 Oscillations
      1. Introduction
      2. 15.1 Simple Harmonic Motion
      3. 15.2 Energy in Simple Harmonic Motion
      4. 15.3 Comparing Simple Harmonic Motion and Circular Motion
      5. 15.4 Pendulums
      6. 15.5 Damped Oscillations
      7. 15.6 Forced Oscillations
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    2. 16 Waves
      1. Introduction
      2. 16.1 Traveling Waves
      3. 16.2 Mathematics of Waves
      4. 16.3 Wave Speed on a Stretched String
      5. 16.4 Energy and Power of a Wave
      6. 16.5 Interference of Waves
      7. 16.6 Standing Waves and Resonance
      8. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
    3. 17 Sound
      1. Introduction
      2. 17.1 Sound Waves
      3. 17.2 Speed of Sound
      4. 17.3 Sound Intensity
      5. 17.4 Normal Modes of a Standing Sound Wave
      6. 17.5 Sources of Musical Sound
      7. 17.6 Beats
      8. 17.7 The Doppler Effect
      9. 17.8 Shock Waves
      10. Chapter Review
        1. Key Terms
        2. Key Equations
        3. Summary
        4. Conceptual Questions
        5. Problems
        6. Additional Problems
        7. Challenge Problems
  4. A | Units
  5. B | Conversion Factors
  6. C | Fundamental Constants
  7. D | Astronomical Data
  8. E | Mathematical Formulas
  9. F | Chemistry
  10. G | The Greek Alphabet
  11. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
  12. Index

Learning Objectives

By the end of this section, you will be able to:

  • Define gauge pressure and absolute pressure
  • Explain various methods for measuring pressure
  • Understand the working of open-tube barometers
  • Describe in detail how manometers and barometers operate

In the preceding section, we derived a formula for calculating the variation in pressure for a fluid in hydrostatic equilibrium. As it turns out, this is a very useful calculation. Measurements of pressure are important in daily life as well as in science and engineering applications. In this section, we discuss different ways that pressure can be reported and measured.

Gauge Pressure vs. Absolute Pressure

Suppose the pressure gauge on a full scuba tank reads 3000 psi, which is approximately 207 atmospheres. When the valve is opened, air begins to escape because the pressure inside the tank is greater than the atmospheric pressure outside the tank. Air continues to escape from the tank until the pressure inside the tank equals the pressure of the atmosphere outside the tank. At this point, the pressure gauge on the tank reads zero, even though the pressure inside the tank is actually 1 atmosphere—the same as the air pressure outside the tank.

Most pressure gauges, like the one on the scuba tank, are calibrated to read zero at atmospheric pressure. Pressure readings from such gauges are called gauge pressure, which is the pressure relative to the atmospheric pressure. When the pressure inside the tank is greater than atmospheric pressure, the gauge reports a positive value.

Some gauges are designed to measure negative pressure. For example, many physics experiments must take place in a vacuum chamber, a rigid chamber from which some of the air is pumped out. The pressure inside the vacuum chamber is less than atmospheric pressure, so the pressure gauge on the chamber reads a negative value.

Unlike gauge pressure, absolute pressure accounts for atmospheric pressure, which in effect adds to the pressure in any fluid not enclosed in a rigid container.

Absolute Pressure

The absolute pressure, or total pressure, is the sum of gauge pressure and atmospheric pressure:

pabs=pg+patmpabs=pg+patm
14.11

where pabspabs is absolute pressure, pgpg is gauge pressure, and patmpatm is atmospheric pressure.

For example, if a tire gauge reads 34 psi, then the absolute pressure is 34 psi plus 14.7 psi (patmpatm in psi), or 48.7 psi (equivalent to 336 kPa).

In most cases, the absolute pressure in fluids cannot be negative. Fluids push rather than pull, so the smallest absolute pressure in a fluid is zero (a negative absolute pressure is a pull). Thus, the smallest possible gauge pressure is pg=patmpg=patm (which makes pabspabs zero). There is no theoretical limit to how large a gauge pressure can be.

Measuring Pressure

A host of devices are used for measuring pressure, ranging from tire gauges to blood pressure monitors. Many other types of pressure gauges are commonly used to test the pressure of fluids, such as mechanical pressure gauges. We will explore some of these in this section.

Any property that changes with pressure in a known way can be used to construct a pressure gauge. Some of the most common types include strain gauges, which use the change in the shape of a material with pressure; capacitance pressure gauges, which use the change in electric capacitance due to shape change with pressure; piezoelectric pressure gauges, which generate a voltage difference across a piezoelectric material under a pressure difference between the two sides; and ion gauges, which measure pressure by ionizing molecules in highly evacuated chambers. Different pressure gauges are useful in different pressure ranges and under different physical situations. Some examples are shown in Figure 14.11.

Figure A is a photo of a gauge used to monitor the pressure in gas cylinders. Figure B is a photo of a tire gauge. Figure C is a photo of an ionization gauge used to monitor pressure in vacuum systems.
Figure 14.11 (a) Gauges are used to measure and monitor pressure in gas cylinders. Compressed gases are used in many industrial as well as medical applications. (b) Tire pressure gauges come in many different models, but all are meant for the same purpose: to measure the internal pressure of the tire. This enables the driver to keep the tires inflated at optimal pressure for load weight and driving conditions. (c) An ionization gauge is a high-sensitivity device used to monitor the pressure of gases in an enclosed system. Neutral gas molecules are ionized by the release of electrons, and the current is translated into a pressure reading. Ionization gauges are commonly used in industrial applications that rely on vacuum systems.

Manometers

One of the most important classes of pressure gauges applies the property that pressure due to the weight of a fluid of constant density is given by p=hρgp=hρg. The U-shaped tube shown in Figure 14.12 is an example of a manometer; in part (a), both sides of the tube are open to the atmosphere, allowing atmospheric pressure to push down on each side equally so that its effects cancel.

A manometer with only one side open to the atmosphere is an ideal device for measuring gauge pressures. The gauge pressure is pg=hρgpg=hρg and is found by measuring h. For example, suppose one side of the U-tube is connected to some source of pressure pabs,pabs, such as the balloon in part (b) of the figure or the vacuum-packed peanut jar shown in part (c). Pressure is transmitted undiminished to the manometer, and the fluid levels are no longer equal. In part (b), pabspabs is greater than atmospheric pressure, whereas in part (c), pabspabs is less than atmospheric pressure. In both cases, pabspabs differs from atmospheric pressure by an amount hρg,hρg, where ρρ is the density of the fluid in the manometer. In part (b), pabspabs can support a column of fluid of height h, so it must exert a pressure hρghρg greater than atmospheric pressure (the gauge pressure pgpg is positive). In part (c), atmospheric pressure can support a column of fluid of height h, so pabspabs is less than atmospheric pressure by an amount hρghρg (the gauge pressure pgpg is negative).

Figure A is a schematic drawing of an open-tube manometer that has both sides open to the atmosphere. Water level is at an identical height on both sides. Figure B is a schematic drawing of an open-tube manometer that has one side open to the atmosphere and the second side connected to the air balloon. Water level is higher at the side opened to the atmosphere. Figure C is a schematic drawing of an open-tube manometer that has one side open to the atmosphere and the second side connected to a can of vacuum packed peanuts. Water level is lower at the side opened to the atmosphere.
Figure 14.12 An open-tube manometer has one side open to the atmosphere. (a) Fluid depth must be the same on both sides, or the pressure each side exerts at the bottom will be unequal and liquid will flow from the deeper side. (b) A positive gauge pressure pg=hρgpg=hρg transmitted to one side of the manometer can support a column of fluid of height h. (c) Similarly, atmospheric pressure is greater than a negative gauge pressure pgpg by an amount hρghρg. The jar’s rigidity prevents atmospheric pressure from being transmitted to the peanuts.

Barometers

Manometers typically use a U-shaped tube of a fluid (often mercury) to measure pressure. A barometer (see Figure 14.13) is a device that typically uses a single column of mercury to measure atmospheric pressure. The barometer, invented by the Italian mathematician and physicist Evangelista Torricelli (1608–1647) in 1643, is constructed from a glass tube closed at one end and filled with mercury. The tube is then inverted and placed in a pool of mercury. This device measures atmospheric pressure, rather than gauge pressure, because there is a nearly pure vacuum above the mercury in the tube. The height of the mercury is such that hρg=patmhρg=patm. When atmospheric pressure varies, the mercury rises or falls.

Weather forecasters closely monitor changes in atmospheric pressure (often reported as barometric pressure), as rising mercury typically signals improving weather and falling mercury indicates deteriorating weather. The barometer can also be used as an altimeter, since average atmospheric pressure varies with altitude. Mercury barometers and manometers are so common that units of mm Hg are often quoted for atmospheric pressure and blood pressures.

A schematic drawing of a mercury barometer. The atmosphere is able to force mercury in the tube to a height h because the pressure above the mercury is zero.
Figure 14.13 A mercury barometer measures atmospheric pressure. The pressure due to the mercury’s weight, hρghρg, equals atmospheric pressure. The atmosphere is able to force mercury in the tube to a height h because the pressure above the mercury is zero.

Example 14.2

Fluid Heights in an Open U-Tube

A U-tube with both ends open is filled with a liquid of density ρ1ρ1 to a height h on both sides (Figure 14.14). A liquid of density ρ2<ρ1ρ2<ρ1 is poured into one side and Liquid 2 settles on top of Liquid 1. The heights on the two sides are different. The height to the top of Liquid 2 from the interface is h2h2 and the height to the top of Liquid 1 from the level of the interface is h1h1. Derive a formula for the height difference.
Left figure shows a U-tube filled with a liquid. The liquid is at the same height at both sides of the U-tube. Right figure shows a U-tube filled with two liquids of different densities. The liquids are at different heights on both sides of the U-tube.
Figure 14.14 Two liquids of different densities are shown in a U-tube.

Strategy

The pressure at points at the same height on the two sides of a U-tube must be the same as long as the two points are in the same liquid. Therefore, we consider two points at the same level in the two arms of the tube: One point is the interface on the side of the Liquid 2 and the other is a point in the arm with Liquid 1 that is at the same level as the interface in the other arm. The pressure at each point is due to atmospheric pressure plus the weight of the liquid above it.
Pressure on the side with Liquid 1=p0+ρ1gh1Pressure on the side with Liquid 2=p0+ρ2gh2Pressure on the side with Liquid 1=p0+ρ1gh1Pressure on the side with Liquid 2=p0+ρ2gh2

Solution

Since the two points are in Liquid 1 and are at the same height, the pressure at the two points must be the same. Therefore, we have
p0+ρ1gh1=p0+ρ2gh2.p0+ρ1gh1=p0+ρ2gh2.

Hence,

ρ1h1=ρ2h2.ρ1h1=ρ2h2.

This means that the difference in heights on the two sides of the U-tube is

h2h1=(1ρ2ρ1)h2.h2h1=(1ρ2ρ1)h2.

The result makes sense if we set ρ2=ρ1,ρ2=ρ1, which gives h2=h1.h2=h1. If the two sides have the same density, they have the same height.

Check Your Understanding 14.2

Mercury is a hazardous substance. Why do you suppose mercury is typically used in barometers instead of a safer fluid such as water?

Units of pressure

As stated earlier, the SI unit for pressure is the pascal (Pa), where

1Pa=1N/m2.1Pa=1N/m2.

In addition to the pascal, many other units for pressure are in common use (Table 14.3). In meteorology, atmospheric pressure is often described in the unit of millibars (mbar), where

1000mbar=1×105Pa.1000mbar=1×105Pa.

The millibar is a convenient unit for meteorologists because the average atmospheric pressure at sea level on Earth is 1.013×105Pa=1013mbar=1atm1.013×105Pa=1013mbar=1atm. Using the equations derived when considering pressure at a depth in a fluid, pressure can also be measured as millimeters or inches of mercury. The pressure at the bottom of a 760-mm column of mercury at 0°C0°C in a container where the top part is evacuated is equal to the atmospheric pressure. Thus, 760 mm Hg is also used in place of 1 atmosphere of pressure. In vacuum physics labs, scientists often use another unit called the torr, named after Torricelli, who, as we have just seen, invented the mercury manometer for measuring pressure. One torr is equal to a pressure of 1 mm Hg.

Unit Definition
SI unit: the Pascal 1Pa=1N/m21Pa=1N/m2
English unit: pounds per square inch (lb/in.2lb/in.2 or psi) 1psi=6.895×103Pa1psi=6.895×103Pa
Other units of pressure 1atm=760mmHg=1.013×105Pa=14.7psi=29.9inches of Hg=1013mbar1atm=760mmHg=1.013×105Pa=14.7psi=29.9inches of Hg=1013mbar
1bar=105Pa1bar=105Pa
1torr=1mm Hg=133.3Pa1torr=1mm Hg=133.3Pa
Table 14.3 Summary of the Units of Pressure
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/university-physics-volume-1/pages/1-introduction
Citation information

© Jul 21, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.