Objetivos de aprendizaje
Al final de esta sección, podrá:
- Enunciar los postulados de la teoría atómica de Dalton.
- Utilizar los postulados de la teoría atómica de Dalton para explicar las leyes de las proporciones definidas y múltiples.
La primera discusión registrada sobre la estructura básica de la materia proviene de los antiguos filósofos griegos, los científicos de su época. En el siglo V a.C., Leucipo y Demócrito sostenían que toda la materia estaba compuesta por partículas pequeñas y finitas que llamaban átomos, término derivado de la palabra griega "indivisible". Pensaron en los átomos como partículas móviles que diferían en forma y tamaño, y que podían unirse. Más tarde, Aristóteles y otros llegaron a la conclusión de que la materia estaba formada por diversas combinaciones de los cuatro “elementos”: fuego, tierra, aire y agua, y podía dividirse infinitamente. Curiosamente, estos filósofos pensaban en los átomos y los "elementos" como conceptos filosóficos, pero aparentemente nunca se plantearon realizar experimentos para comprobar sus ideas.
La visión aristotélica de la composición de la materia se mantuvo durante más de dos mil años, hasta que el maestro de escuela inglés John Dalton contribuyó a revolucionar la química con su hipótesis de que el comportamiento de la materia podía explicarse mediante una teoría atómica. Publicada por primera vez en 1807, muchas de las hipótesis de Dalton sobre las características microscópicas de la materia siguen siendo válidas en la teoría atómica moderna. Estos son los postulados de la teoría atómica de Dalton.
- La materia está compuesta por partículas extremadamente pequeñas llamadas átomos. Un átomo es la unidad más pequeña de un elemento que puede participar en un cambio químico.
- Un elemento está formado por un solo tipo de átomo, que tiene una masa característica del elemento y que es la misma para todos los átomos de ese elemento (Figura 2.2). Una muestra macroscópica de un elemento contiene un número increíblemente grande de átomos, todos los cuales tienen propiedades químicas idénticas.
- Los átomos de un elemento difieren en propiedades de los átomos de todos los demás elementos.
- Un compuesto está formado por átomos de dos o más elementos combinados en una pequeña proporción de números enteros. En un determinado compuesto, el número de átomos de cada uno de sus elementos está siempre presente en la misma proporción (Figura 2.3).
- Los átomos no se crean ni se destruyen durante un cambio químico, sino que se reordenan para dar lugar a sustancias diferentes de las presentes antes del cambio (Figura 2.4).
La teoría atómica de Dalton ofrece una explicación microscópica de las numerosas propiedades macroscópicas de la materia de las que ha aprendido. Por ejemplo, si un elemento como el cobre está formado por un solo tipo de átomos, no puede descomponerse en sustancias más simples, es decir, en sustancias compuestas por menos tipos de átomos. Y si los átomos no se crean ni se destruyen durante un cambio químico, entonces la masa total de materia presente cuando la materia cambia de un tipo a otro permanecerá constante (ley de conservación de la materia).
Ejemplo 2.1
Prueba de la teoría atómica de Dalton
En el siguiente dibujo, las esferas verdes representan átomos de un determinado elemento. Las esferas moradas representan átomos de otro elemento. Si las esferas se tocan, forman parte de una unidad de un compuesto. ¿El siguiente cambio químico representado por estos símbolos viola alguna de las ideas de la teoría atómica de Dalton? Si es así, ¿cuál?Solución
Los materiales de partida consisten en dos esferas verdes y dos esferas púrpura. Los productos consisten en una sola esfera verde y una esfera púrpura. Esto viola el postulado de Dalton de que los átomos no se crean ni se destruyen durante un cambio químico, sino que simplemente se redistribuyen (en este caso, los átomos parecen haber sido destruidos).Compruebe lo aprendido
En el siguiente dibujo, las esferas verdes representan átomos de un determinado elemento. Las esferas moradas representan átomos de otro elemento. Si las esferas se tocan, forman parte de una unidad de un compuesto. ¿El siguiente cambio químico representado por estos símbolos viola alguna de las ideas de la teoría atómica de Dalton? Si es así, ¿cuál?Respuesta:
Los materiales de partida consisten en cuatro esferas verdes y dos esferas púrpura. Los productos consisten en cuatro esferas verdes y dos esferas púrpura. Esto no viola ninguno de los postulados de Dalton: los átomos no se crean ni se destruyen, sino que se redistribuyen en pequeñas proporciones de números enteros.
Dalton conocía los experimentos del químico francés Joseph Proust, quien demostró que todas las muestras de un compuesto puro contienen los mismos elementos en la misma proporción en masa. Esta afirmación se conoce como la ley de las proporciones definidas o la ley de la composición constante. La sugerencia de que el número de átomos de los elementos de un determinado compuesto existe siempre en la misma proporción es coherente con estas observaciones. Por ejemplo, cuando se analizan diferentes muestras de isooctano (un componente de la gasolina y uno de los estándares utilizados en el sistema de octanaje), se encuentra que tienen una relación de masa de carbono a hidrógeno de 5,33:1, como se muestra en la Tabla 2.1.
Muestra | Carbono | Hidrógeno | Relación de masa |
---|---|---|---|
A | 14,82 g | 2,78 g | |
B | 22,33 g | 4,19 g | |
C | 19,40 g | 3,64 g |
Cabe destacar que, aunque todas las muestras de un determinado compuesto tengan la misma relación de masas, lo contrario no es cierto en general. Es decir, las muestras que tienen la misma relación de masa no son necesariamente la misma sustancia. Por ejemplo, hay muchos compuestos, además del isooctano, que también tienen una relación de masas de carbono a hidrógeno de 5,33:1,00.
Dalton también utilizó los datos de Proust, así como los resultados de sus propios experimentos, para formular otra ley interesante. La ley de las proporciones múltiples establece que cuando dos elementos reaccionan para formar más de un compuesto, una masa fija de un elemento reaccionará con masas del otro elemento en una relación de números enteros y sencillos. Por ejemplo, el cobre y el cloro pueden formar un sólido verde y cristalino con una relación de masas de 0,558 g de cloro por 1 g de cobre, así como un sólido cristalino marrón con una relación de masas de 1,116 g de cloro por 1 g de cobre. Estas relaciones por sí mismas pueden no parecer especialmente interesantes o informativas; sin embargo, si tomamos una relación de estas proporciones obtenemos un resultado útil y posiblemente sorprendente: una relación de números enteros y sencillos.
Esta relación de 2 a 1 significa que el compuesto marrón tiene el doble de cantidad de cloro por cantidad de cobre que el compuesto verde.
Esto puede explicarse mediante la teoría atómica si la relación cobre-cloro en el compuesto marrón es de 1 átomo de cobre por 2 átomos de cloro, y la relación en el compuesto verde es de 1 átomo de cobre por 1 átomo de cloro. La relación de los átomos de cloro (y, por lo tanto, la relación de sus masas) es por consiguiente de 2 a 1 (Figura 2.5).
Ejemplo 2.2
Leyes de las proporciones definidas y múltiples
Se analiza una muestra del compuesto A (un gas claro e incoloro) y se encuentra que contiene 4,27 g de carbono y 5,69 g de oxígeno. Se analiza una muestra del compuesto B (también un gas claro e incoloro) y se encuentra que contiene 5,19 g de carbono y 13,84 g de oxígeno. ¿Son estos datos un ejemplo de la ley de las proporciones definidas, de la ley de las proporciones múltiples o de ninguna de ellas? ¿Qué le dicen estos datos sobre las sustancias A y B?Solución
En el compuesto A, la relación de masas entre el oxígeno y el carbono es:En el compuesto B, la relación de masas entre el oxígeno y el carbono es:
La relación de estas proporciones es:
Esto apoya la ley de las proporciones múltiples. Esto significa que A y B son compuestos diferentes, teniendo A la mitad de oxígeno por cantidad de carbono (o el doble de carbono por cantidad de oxígeno) que B. Un posible par de compuestos que se ajustaría a esta relación sería A = CO y B =CO2.
Compruebe lo aprendido
Se analiza una muestra del compuesto X (un líquido claro, incoloro y combustible con un olor perceptible) y se encuentra que contiene 14,13 g de carbono y 2,96 g de hidrógeno. Se analiza una muestra del compuesto Y (un líquido claro, incoloro y combustible con un olor perceptible que es ligeramente diferente del olor de X) y se encuentra que contiene 19,91 g de carbono y 3,34 g de hidrógeno. ¿Son estos datos un ejemplo de la ley de las proporciones definidas, de la ley de las proporciones múltiples o de ninguna de ellas? ¿Qué le dicen estos datos sobre las sustancias “X” y “Y”?Respuesta:
En el compuesto X, la relación de masas entre el carbono y el hidrógeno es En el compuesto Y, la relación de masas entre el carbono y el hidrógeno es La relación de estas proporciones es Esta pequeña relación de números enteros apoya la ley de las proporciones múltiples. Esto significa que X y Y son compuestos diferentes.