Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Psychology 2e

5.6 Gestalt Principles of Perception

Psychology 2e5.6 Gestalt Principles of Perception

Learning Objectives

By the end of this section, you will be able to:

  • Explain the figure-ground relationship
  • Define Gestalt principles of grouping
  • Describe how perceptual set is influenced by an individual’s characteristics and mental state

In the early part of the 20th century, Max Wertheimer published a paper demonstrating that individuals perceived motion in rapidly flickering static images—an insight that came to him as he used a child’s toy tachistoscope. Wertheimer, and his assistants Wolfgang Köhler and Kurt Koffka, who later became his partners, believed that perception involved more than simply combining sensory stimuli. This belief led to a new movement within the field of psychology known as Gestalt psychology. The word gestalt literally means form or pattern, but its use reflects the idea that the whole is different from the sum of its parts. In other words, the brain creates a perception that is more than simply the sum of available sensory inputs, and it does so in predictable ways. Gestalt psychologists translated these predictable ways into principles by which we organize sensory information. As a result, Gestalt psychology has been extremely influential in the area of sensation and perception (Rock & Palmer, 1990).

One Gestalt principle is the figure-ground relationship. According to this principle, we tend to segment our visual world into figure and ground. Figure is the object or person that is the focus of the visual field, while the ground is the background. As Figure 5.25 shows, our perception can vary tremendously, depending on what is perceived as figure and what is perceived as ground. Presumably, our ability to interpret sensory information depends on what we label as figure and what we label as ground in any particular case, although this assumption has been called into question (Peterson & Gibson, 1994; Vecera & O’Reilly, 1998).

An illustration shows two identical black face-like shapes that face towards one another, and one white vase-like shape that occupies all of the space in between them. Depending on which part of the illustration is focused on, either the black shapes or the white shape may appear to be the object of the illustration, leaving the other(s) perceived as negative space.
Figure 5.25 The concept of figure-ground relationship explains why this image can be perceived either as a vase or as a pair of faces.

Another Gestalt principle for organizing sensory stimuli into meaningful perception is proximity. This principle asserts that things that are close to one another tend to be grouped together, as Figure 5.26 illustrates.

Illustration A shows thirty-six dots in six evenly-spaced rows and columns. Illustration B shows thirty-six dots in six evenly-spaced rows but with the columns separated into three sets of two columns.
Figure 5.26 The Gestalt principle of proximity suggests that you see (a) one block of dots on the left side and (b) three columns on the right side.

How we read something provides another illustration of the proximity concept. For example, we read this sentence like this, notl iket hiso rt hat. We group the letters of a given word together because there are no spaces between the letters, and we perceive words because there are spaces between each word. Here are some more examples: Cany oum akes enseo ft hiss entence? What doth es e wor dsmea n?

We might also use the principle of similarity to group things in our visual fields. According to this principle, things that are alike tend to be grouped together (Figure 5.27). For example, when watching a football game, we tend to group individuals based on the colors of their uniforms. When watching an offensive drive, we can get a sense of the two teams simply by grouping along this dimension.

An illustration shows six rows of six dots each. The rows of dots alternate between blue and white colored dots.
Figure 5.27 When looking at this array of dots, we likely perceive alternating rows of colors. We are grouping these dots according to the principle of similarity.

Two additional Gestalt principles are the law of continuity (or good continuation) and closure. The law of continuity suggests that we are more likely to perceive continuous, smooth flowing lines rather than jagged, broken lines (Figure 5.28). The principle of closure states that we organize our perceptions into complete objects rather than as a series of parts (Figure 5.29).

An illustration shows two lines of diagonal dots that cross in the middle in the general shape of an “X.”
Figure 5.28 Good continuation would suggest that we are more likely to perceive this as two overlapping lines, rather than four lines meeting in the center.
An illustration shows fragmented lines that would form a circle if they were connected. Another illustration shows fragmented lines that would form a square if they were connected.
Figure 5.29 Closure suggests that we will perceive a complete circle and rectangle rather than a series of segments.

According to Gestalt theorists, pattern perception, or our ability to discriminate among different figures and shapes, occurs by following the principles described above. You probably feel fairly certain that your perception accurately matches the real world, but this is not always the case. Our perceptions are based on perceptual hypotheses: educated guesses that we make while interpreting sensory information. These hypotheses are informed by a number of factors, including our personalities, experiences, and expectations. We use these hypotheses to generate our perceptual set. For instance, research has demonstrated that those who are given verbal priming produce a biased interpretation of complex ambiguous figures (Goolkasian & Woodberry, 2010).

Dig Deeper

The Depths of Perception: Bias, Prejudice, and Cultural Factors

In this chapter, you have learned that perception is a complex process. Built from sensations, but influenced by our own experiences, biases, prejudices, and cultures, perceptions can be very different from person to person. Research suggests that implicit racial prejudice and stereotypes affect perception. For instance, several studies have demonstrated that non-Black participants identify weapons faster and are more likely to identify non-weapons as weapons when the image of the weapon is paired with the image of a Black person (Payne, 2001; Payne, Shimizu, & Jacoby, 2005). Furthermore, White individuals’ decisions to shoot an armed target in a video game is made more quickly when the target is Black (Correll, Park, Judd, & Wittenbrink, 2002; Correll, Urland, & Ito, 2006). This research is important, considering the number of very high-profile cases in the last few decades in which Black people were killed by people who claimed to believe that the unarmed individuals were armed and/or represented some threat to their personal safety.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/psychology-2e/pages/1-introduction
Citation information

© Jan 6, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.