Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Precalculus

8.5 Polar Form of Complex Numbers

Precalculus8.5 Polar Form of Complex Numbers

Learning Objectives

In this section, you will:

  • Plot complex numbers in the complex plane.
  • Find the absolute value of a complex number.
  • Write complex numbers in polar form.
  • Convert a complex number from polar to rectangular form.
  • Find products of complex numbers in polar form.
  • Find quotients of complex numbers in polar form.
  • Find powers of complex numbers in polar form.
  • Find roots of complex numbers in polar form.

“God made the integers; all else is the work of man.” This rather famous quote by nineteenth-century German mathematician Leopold Kronecker sets the stage for this section on the polar form of a complex number. Complex numbers were invented by people and represent over a thousand years of continuous investigation and struggle by mathematicians such as Pythagoras, Descartes, De Moivre, Euler, Gauss, and others. Complex numbers answered questions that for centuries had puzzled the greatest minds in science.

We first encountered complex numbers in Complex Numbers. In this section, we will focus on the mechanics of working with complex numbers: translation of complex numbers from polar form to rectangular form and vice versa, interpretation of complex numbers in the scheme of applications, and application of De Moivre’s Theorem.

Plotting Complex Numbers in the Complex Plane

Plotting a complex number a+bi a+bi is similar to plotting a real number, except that the horizontal axis represents the real part of the number, a, a, and the vertical axis represents the imaginary part of the number, bi. bi.

How To

Given a complex number a+bi, a+bi, plot it in the complex plane.

  1. Label the horizontal axis as the real axis and the vertical axis as the imaginary axis.
  2. Plot the point in the complex plane by moving a a units in the horizontal direction and b b units in the vertical direction.

Example 1

Plotting a Complex Number in the Complex Plane

Plot the complex number 23i 23i in the complex plane.

Try It #1

Plot the point 1+5i 1+5i in the complex plane.

Finding the Absolute Value of a Complex Number

The first step toward working with a complex number in polar form is to find the absolute value. The absolute value of a complex number is the same as its magnitude, or | z |. | z |. It measures the distance from the origin to a point in the plane. For example, the graph of z=2+4i, z=2+4i, in Figure 2, shows | z |. | z |.

Plot of 2+4i in the complex plane and its magnitude, |z| = rad 20.
Figure 2

Absolute Value of a Complex Number

Given z=x+yi, z=x+yi, a complex number, the absolute value of z z is defined as

| z |= x 2 + y 2 | z |= x 2 + y 2

It is the distance from the origin to the point ( x,y ). ( x,y ).

Notice that the absolute value of a real number gives the distance of the number from 0, while the absolute value of a complex number gives the distance of the number from the origin, ( 0,0 ). ( 0,0 ).

Example 2

Finding the Absolute Value of a Complex Number with a Radical

Find the absolute value of z= 5 i. z= 5 i.

Try It #2

Find the absolute value of the complex number z=125i. z=125i.

Example 3

Finding the Absolute Value of a Complex Number

Given z=34i, z=34i, find | z |. | z |.

Try It #3

Given z=17i, z=17i, find | z |. | z |.

Writing Complex Numbers in Polar Form

The polar form of a complex number expresses a number in terms of an angle θ θ and its distance from the origin r. r. Given a complex number in rectangular form expressed as z=x+yi, z=x+yi, we use the same conversion formulas as we do to write the number in trigonometric form:

x=rcosθ y=rsinθ r= x 2 + y 2 x=rcosθ y=rsinθ r= x 2 + y 2

We review these relationships in Figure 5.

Triangle plotted in the complex plane (x axis is real, y axis is imaginary). Base is along the x/real axis, height is some y/imaginary value in Q 1, and hypotenuse r extends from origin to that point (x+yi) in Q 1. The angle at the origin is theta. There is an arc going through (x+yi).
Figure 5

We use the term modulus to represent the absolute value of a complex number, or the distance from the origin to the point ( x,y ). ( x,y ). The modulus, then, is the same as r, r, the radius in polar form. We use θ θ to indicate the angle of direction (just as with polar coordinates). Substituting, we have

z=x+yi z=rcosθ+( rsinθ )i z=r( cosθ+isinθ ) z=x+yi z=rcosθ+( rsinθ )i z=r( cosθ+isinθ )

Polar Form of a Complex Number

Writing a complex number in polar form involves the following conversion formulas:

x=rcosθ y=rsinθ r= x 2 + y 2 x=rcosθ y=rsinθ r= x 2 + y 2

Making a direct substitution, we have

z=x+yi z=( rcosθ )+i( rsinθ ) z=r( cosθ+isinθ ) z=x+yi z=( rcosθ )+i( rsinθ ) z=r( cosθ+isinθ )

where r r is the modulus and θ θ is the argument. We often use the abbreviation rcisθ rcisθ to represent r( cosθ+isinθ ). r( cosθ+isinθ ).

Example 4

Expressing a Complex Number Using Polar Coordinates

Express the complex number 4i 4i using polar coordinates.

Try It #4

Express z=3i z=3i as rcisθ rcisθ in polar form.

Example 5

Finding the Polar Form of a Complex Number

Find the polar form of 4+4i. 4+4i.

Try It #5

Write z= 3 +i z= 3 +i in polar form.

Converting a Complex Number from Polar to Rectangular Form

Converting a complex number from polar form to rectangular form is a matter of evaluating what is given and using the distributive property. In other words, given z=r( cosθ+isinθ ), z=r( cosθ+isinθ ), first evaluate the trigonometric functions cosθ cosθ and sinθ. sinθ. Then, multiply through by r. r.

Example 6

Converting from Polar to Rectangular Form

Convert the polar form of the given complex number to rectangular form:

z=12( cos( π 6 )+isin( π 6 ) ) z=12( cos( π 6 )+isin( π 6 ) )

Example 7

Finding the Rectangular Form of a Complex Number

Find the rectangular form of the complex number given r=13 r=13 and tanθ= 5 12 . tanθ= 5 12 .

Try It #6

Convert the complex number to rectangular form:

z=4( cos 11π 6 +isin 11π 6 ) z=4( cos 11π 6 +isin 11π 6 )

Finding Products of Complex Numbers in Polar Form

Now that we can convert complex numbers to polar form we will learn how to perform operations on complex numbers in polar form. For the rest of this section, we will work with formulas developed by French mathematician Abraham De Moivre (1667-1754). These formulas have made working with products, quotients, powers, and roots of complex numbers much simpler than they appear. The rules are based on multiplying the moduli and adding the arguments.

Products of Complex Numbers in Polar Form

If z 1 = r 1 (cos θ 1 +isin θ 1 ) z 1 = r 1 (cos θ 1 +isin θ 1 ) and z 2 = r 2 (cos θ 2 +isin θ 2 ), z 2 = r 2 (cos θ 2 +isin θ 2 ), then the product of these numbers is given as:

z 1 z 2 = r 1 r 2 [ cos( θ 1 + θ 2 )+isin( θ 1 + θ 2 ) ] z 1 z 2 = r 1 r 2 cis( θ 1 + θ 2 ) z 1 z 2 = r 1 r 2 [ cos( θ 1 + θ 2 )+isin( θ 1 + θ 2 ) ] z 1 z 2 = r 1 r 2 cis( θ 1 + θ 2 )

Notice that the product calls for multiplying the moduli and adding the angles.

Example 8

Finding the Product of Two Complex Numbers in Polar Form

Find the product of z 1 z 2 , z 1 z 2 , given z 1 =4(cos(80°)+isin(80°)) z 1 =4(cos(80°)+isin(80°)) and z 2 =2(cos(145°)+isin(145°)). z 2 =2(cos(145°)+isin(145°)).

Finding Quotients of Complex Numbers in Polar Form

The quotient of two complex numbers in polar form is the quotient of the two moduli and the difference of the two arguments.

Quotients of Complex Numbers in Polar Form

If z 1 = r 1 (cos θ 1 +isin θ 1 ) z 1 = r 1 (cos θ 1 +isin θ 1 ) and z 2 = r 2 (cos θ 2 +isin θ 2 ), z 2 = r 2 (cos θ 2 +isin θ 2 ), then the quotient of these numbers is

z 1 z 2 = r 1 r 2 [ cos( θ 1 θ 2 )+isin( θ 1 θ 2 ) ], z 2 0 z 1 z 2 = r 1 r 2 cis( θ 1 θ 2 ), z 2 0 z 1 z 2 = r 1 r 2 [ cos( θ 1 θ 2 )+isin( θ 1 θ 2 ) ], z 2 0 z 1 z 2 = r 1 r 2 cis( θ 1 θ 2 ), z 2 0

Notice that the moduli are divided, and the angles are subtracted.

How To

Given two complex numbers in polar form, find the quotient.

  1. Divide r 1 r 2 . r 1 r 2 .
  2. Find θ 1 θ 2 . θ 1 θ 2 .
  3. Substitute the results into the formula: z=r( cosθ+isinθ ). z=r( cosθ+isinθ ). Replace r r with r 1 r 2 , r 1 r 2 , and replace θ θ with θ 1 θ 2 . θ 1 θ 2 .
  4. Calculate the new trigonometric expressions and multiply through by r. r.

Example 9

Finding the Quotient of Two Complex Numbers

Find the quotient of z 1 =2(cos(213°)+isin(213°)) z 1 =2(cos(213°)+isin(213°)) and z 2 =4(cos(33°)+isin(33°)). z 2 =4(cos(33°)+isin(33°)).

Try It #7

Find the product and the quotient of z 1 =2 3 (cos(150°)+isin(150°)) z 1 =2 3 (cos(150°)+isin(150°)) and z 2 =2(cos(30°)+isin(30°)). z 2 =2(cos(30°)+isin(30°)).

Finding Powers of Complex Numbers in Polar Form

Finding powers of complex numbers is greatly simplified using De Moivre’s Theorem. It states that, for a positive integer n, z n n, z n is found by raising the modulus to the nth nth power and multiplying the argument by n. n. It is the standard method used in modern mathematics.

De Moivre’s Theorem

If z=r( cosθ+isinθ ) z=r( cosθ+isinθ ) is a complex number, then

z n = r n [ cos( nθ )+isin( nθ ) ] z n = r n cis( nθ ) z n = r n [ cos( nθ )+isin( nθ ) ] z n = r n cis( nθ )

where n n is a positive integer.

Example 10

Evaluating an Expression Using De Moivre’s Theorem

Evaluate the expression ( 1+i ) 5 ( 1+i ) 5 using De Moivre’s Theorem.

Finding Roots of Complex Numbers in Polar Form

To find the nth root of a complex number in polar form, we use the nth nth Root Theorem or De Moivre’s Theorem and raise the complex number to a power with a rational exponent. There are several ways to represent a formula for finding nth nth roots of complex numbers in polar form.

The nth Root Theorem

To find the nth nth root of a complex number in polar form, use the formula given as

z 1 n = r 1 n [ cos( θ n + 2kπ n )+isin( θ n + 2kπ n ) ] z 1 n = r 1 n [ cos( θ n + 2kπ n )+isin( θ n + 2kπ n ) ]

where k=0,1,2,3,...,n1. k=0,1,2,3,...,n1. We add 2kπ n 2kπ n to θ n θ n in order to obtain the periodic roots.

Example 11

Finding the nth Root of a Complex Number

Evaluate the cube roots of z=8( cos( 2π 3 )+isin( 2π 3 ) ). z=8( cos( 2π 3 )+isin( 2π 3 ) ).

Try It #8

Find the four fourth roots of 16(cos(120°)+isin(120°)). 16(cos(120°)+isin(120°)).

Media

Access these online resources for additional instruction and practice with polar forms of complex numbers.

8.5 Section Exercises

Verbal

1.

A complex number is a+bi. a+bi. Explain each part.

2.

What does the absolute value of a complex number represent?

3.

How is a complex number converted to polar form?

4.

How do we find the product of two complex numbers?

5.

What is De Moivre’s Theorem and what is it used for?

Algebraic

For the following exercises, find the absolute value of the given complex number.

6.

5+3i 5+3i

7.

7+i 7+i

8.

33i 33i

9.

2 6i 2 6i

10.

2i 2i

11.

2.23.1i 2.23.1i

For the following exercises, write the complex number in polar form.

12.

2+2i 2+2i

13.

84i 84i

14.

1 2 1 2 i 1 2 1 2 i

15.

3 +i 3 +i

16.

3i 3i

For the following exercises, convert the complex number from polar to rectangular form.

17.

z=7cis( π 6 ) z=7cis( π 6 )

18.

z=2cis( π 3 ) z=2cis( π 3 )

19.

z=4cis( 7π 6 ) z=4cis( 7π 6 )

20.

z=7cis( 25° ) z=7cis( 25° )

21.

z=3cis( 240° ) z=3cis( 240° )

22.

z= 2 cis( 100° ) z= 2 cis( 100° )

For the following exercises, find z 1 z 2 z 1 z 2 in polar form.

23.

z 1 =2 3 cis( 116° ); z 2 =2cis( 82° ) z 1 =2 3 cis( 116° ); z 2 =2cis( 82° )

24.

z 1 = 2 cis( 205° ); z 2 =2 2 cis( 118° ) z 1 = 2 cis( 205° ); z 2 =2 2 cis( 118° )

25.

z 1 =3cis( 120° ); z 2 = 1 4 cis( 60° ) z 1 =3cis( 120° ); z 2 = 1 4 cis( 60° )

26.

z 1 =3cis( π 4 ); z 2 =5cis( π 6 ) z 1 =3cis( π 4 ); z 2 =5cis( π 6 )

27.

z 1 = 5 cis( 5π 8 ); z 2 = 15 cis( π 12 ) z 1 = 5 cis( 5π 8 ); z 2 = 15 cis( π 12 )

28.

z 1 =4cis( π 2 ); z 2 =2cis( π 4 ) z 1 =4cis( π 2 ); z 2 =2cis( π 4 )

For the following exercises, find z 1 z 2 z 1 z 2 in polar form.

29.

z 1 =21cis( 135° ); z 2 =3cis( 65° ) z 1 =21cis( 135° ); z 2 =3cis( 65° )

30.

z 1 = 2 cis( 90° ); z 2 =2cis( 60° ) z 1 = 2 cis( 90° ); z 2 =2cis( 60° )

31.

z 1 =15cis( 120° ); z 2 =3cis( 40° ) z 1 =15cis( 120° ); z 2 =3cis( 40° )

32.

z 1 =6cis( π 3 ); z 2 =2cis( π 4 ) z 1 =6cis( π 3 ); z 2 =2cis( π 4 )

33.

z 1 =5 2 cis( π ); z 2 = 2 cis( 2π 3 ) z 1 =5 2 cis( π ); z 2 = 2 cis( 2π 3 )

34.

z 1 =2cis( 3π 5 ); z 2 =3cis( π 4 ) z 1 =2cis( 3π 5 ); z 2 =3cis( π 4 )

For the following exercises, find the powers of each complex number in polar form.

35.

Find z 3 z 3 when z=5cis( 45° ). z=5cis( 45° ).

36.

Find z 4 z 4 when z=2cis( 70° ). z=2cis( 70° ).

37.

Find z 2 z 2 when z=3cis( 120° ). z=3cis( 120° ).

38.

Find z 2 z 2 when z=4cis( π 4 ). z=4cis( π 4 ).

39.

Find z 4 z 4 when z=cis( 3π 16 ). z=cis( 3π 16 ).

40.

Find z 3 z 3 when z=3cis( 5π 3 ). z=3cis( 5π 3 ).

For the following exercises, evaluate each root.

41.

Evaluate the cube root of z z when z=27cis( 240° ). z=27cis( 240° ).

42.

Evaluate the square root of z z when z=16cis( 100° ). z=16cis( 100° ).

43.

Evaluate the cube root of z z when z=32cis( 2π 3 ). z=32cis( 2π 3 ).

44.

Evaluate the square root of z z when z=32cis( π ). z=32cis( π ).

45.

Evaluate the square root of z z when z=8cis( 7π 4 ). z=8cis( 7π 4 ).

Graphical

For the following exercises, plot the complex number in the complex plane.

46.

2+4i 2+4i

47.

33i 33i

48.

54i 54i

49.

15i 15i

50.

3+2i 3+2i

51.

2i 2i

52.

4 4

53.

62i 62i

54.

2+i 2+i

55.

14i 14i

Technology

For the following exercises, find all answers rounded to the nearest hundredth.

56.

Use the rectangular to polar feature on the graphing calculator to change 5+5i 5+5i to polar form.

57.

Use the rectangular to polar feature on the graphing calculator to change 32i 32i to polar form.

58.

Use the rectangular to polar feature on the graphing calculator to change 38i 38i to polar form.

59.

Use the polar to rectangular feature on the graphing calculator to change 4cis( 120° ) 4cis( 120° ) to rectangular form.

60.

Use the polar to rectangular feature on the graphing calculator to change 2cis( 45° ) 2cis( 45° ) to rectangular form.

61.

Use the polar to rectangular feature on the graphing calculator to change 5cis( 210° ) 5cis( 210° ) to rectangular form.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/precalculus/pages/1-introduction-to-functions
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/precalculus/pages/1-introduction-to-functions
Citation information

© Dec 8, 2021 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.