Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Precalculus 2e

Key Equations

Precalculus 2eKey Equations

Key Equations

Pythagorean Identities sin 2 θ+ cos 2 θ=1 1+ cot 2 θ= csc 2 θ 1+ tan 2 θ= sec 2 θ sin 2 θ+ cos 2 θ=1 1+ cot 2 θ= csc 2 θ 1+ tan 2 θ= sec 2 θ
Even-odd identities tan( θ )=tanθ cot( θ )=cotθ sin( θ )=sinθ csc( θ )=cscθ cos( θ )=cosθ sec( θ )=secθ tan( θ )=tanθ cot( θ )=cotθ sin( θ )=sinθ csc( θ )=cscθ cos( θ )=cosθ sec( θ )=secθ
Reciprocal identities sinθ= 1 cscθ cosθ= 1 secθ tanθ= 1 cotθ cscθ= 1 sinθ secθ= 1 cosθ cotθ= 1 tanθ sinθ= 1 cscθ cosθ= 1 secθ tanθ= 1 cotθ cscθ= 1 sinθ secθ= 1 cosθ cotθ= 1 tanθ
Quotient identities tanθ= sinθ cosθ cotθ= cosθ sinθ tanθ= sinθ cosθ cotθ= cosθ sinθ
Sum Formula for Cosine cos( α+β )=cosαcosβsinαsinβ cos( α+β )=cosαcosβsinαsinβ
Difference Formula for Cosine cos( αβ )=cosαcosβ+sinαsinβ cos( αβ )=cosαcosβ+sinαsinβ
Sum Formula for Sine sin( α+β )=sinαcosβ+cosαsinβ sin( α+β )=sinαcosβ+cosαsinβ
Difference Formula for Sine sin( αβ )=sinαcosβcosαsinβ sin( αβ )=sinαcosβcosαsinβ
Sum Formula for Tangent tan( α+β )= tanα+tanβ 1tanαtanβ tan( α+β )= tanα+tanβ 1tanαtanβ
Difference Formula for Tangent tan( αβ )= tanαtanβ 1+tanαtanβ tan( αβ )= tanαtanβ 1+tanαtanβ
Cofunction identities sinθ=cos( π 2 θ ) cosθ=sin( π 2 θ ) tanθ=cot( π 2 θ ) cotθ=tan( π 2 θ ) secθ=csc( π 2 θ ) cscθ=sec( π 2 θ ) sinθ=cos( π 2 θ ) cosθ=sin( π 2 θ ) tanθ=cot( π 2 θ ) cotθ=tan( π 2 θ ) secθ=csc( π 2 θ ) cscθ=sec( π 2 θ )
Double-angle formulas sin(2θ)=2sinθcosθ cos(2θ)= cos 2 θ sin 2 θ            =12 sin 2 θ            =2 cos 2 θ1 tan(2θ)= 2tanθ 1 tan 2 θ sin(2θ)=2sinθcosθ cos(2θ)= cos 2 θ sin 2 θ            =12 sin 2 θ            =2 cos 2 θ1 tan(2θ)= 2tanθ 1 tan 2 θ
Reduction formulas sin 2 θ= 1cos( 2θ ) 2 cos 2 θ= 1+cos( 2θ ) 2 tan 2 θ= 1cos( 2θ ) 1+cos( 2θ ) sin 2 θ= 1cos( 2θ ) 2 cos 2 θ= 1+cos( 2θ ) 2 tan 2 θ= 1cos( 2θ ) 1+cos( 2θ )
Half-angle formulas sin α 2 =± 1cosα 2 cos α 2 =± 1+cosα 2 tan α 2 =± 1cosα 1+cosα         = sinα 1+cosα         = 1cosα sinα sin α 2 =± 1cosα 2 cos α 2 =± 1+cosα 2 tan α 2 =± 1cosα 1+cosα         = sinα 1+cosα         = 1cosα sinα
Product-to-sum Formulas cosαcosβ= 1 2 [cos(αβ)+cos(α+β)] sinαcosβ= 1 2 [sin(α+β)+sin(αβ)] sinαsinβ= 1 2 [cos(αβ)cos(α+β)] cosαsinβ= 1 2 [sin(α+β)sin(αβ)] cosαcosβ= 1 2 [cos(αβ)+cos(α+β)] sinαcosβ= 1 2 [sin(α+β)+sin(αβ)] sinαsinβ= 1 2 [cos(αβ)cos(α+β)] cosαsinβ= 1 2 [sin(α+β)sin(αβ)]
Sum-to-product Formulas sinα+sinβ=2sin( α+β 2 )cos( αβ 2 ) sinαsinβ=2sin( αβ 2 )cos( α+β 2 ) cosαcosβ=2sin( α+β 2 )sin( αβ 2 ) cosα+cosβ=2cos( α+β 2 )cos( αβ 2 ) sinα+sinβ=2sin( α+β 2 )cos( αβ 2 ) sinαsinβ=2sin( αβ 2 )cos( α+β 2 ) cosαcosβ=2sin( α+β 2 )sin( αβ 2 ) cosα+cosβ=2cos( α+β 2 )cos( αβ 2 )
Standard form of sinusoidal equation y=Asin( BtC )+Dory=Acos( BtC )+D y=Asin( BtC )+Dory=Acos( BtC )+D
Simple harmonic motion d=acos( ωt )  or  d=asin( ωt ) d=acos( ωt )  or  d=asin( ωt )
Damped harmonic motion f( t )=a e c t sin(ωt)orf( t )=a e ct cos( ωt ) f( t )=a e c t sin(ωt)orf( t )=a e ct cos( ωt )
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/precalculus-2e/pages/1-introduction-to-functions
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/precalculus-2e/pages/1-introduction-to-functions
Citation information

© Jun 28, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.