Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Physics

Problems

PhysicsProblems

Problems

3.1 Acceleration

12.

The driver of a sports car traveling at 10.0 m/s steps down hard on the accelerator for 5.0 s and the velocity increases to 30.0 m/s. What was the average acceleration of the car during the 5.0 s time interval?

  1. –1.0 × 102 m/s2
  2. –4.0 m/s2
  3. 4.0 m/s2
  4. 1.0 × 102 m/s2
13.

A girl rolls a basketball across a basketball court. The ball slowly decelerates at a rate of −0.20 m/s2. If the initial velocity was 2.0 m/s and the ball rolled to a stop at 5.0 sec after 12:00 p.m., at what time did she start the ball rolling?

  1. 0.1 seconds before noon
  2. 0.1 seconds after noon
  3. 5 seconds before noon
  4. 5 seconds after noon

3.2 Representing Acceleration with Equations and Graphs

14.

A swan on a lake gets airborne by flapping its wings and running on top of the water. If the swan must reach a velocity of 6.00 m/s to take off and it accelerates from rest at a constant rate of 0.350 m/s2, how far will it travel before becoming airborne?

  1. −8.60 m
  2. 8.60 m
  3. −51.4 m
  4. 51.4 m
15 .
A swimmer bounces straight up from a diving board and falls feet first into a pool. She starts with a velocity of 4.00 m/s and her takeoff point is 8 m above the pool. How long are her feet in the air?
  1. 0.408 s
  2. 0.816 s
  3. 1.34 s
  4. 1.75 s
  5. 1.28 s
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-physics . Changes were made to the original material, including updates to art, structure, and other content updates.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
Citation information

© Jun 7, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.