Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

21.3 The Dual Nature of Light

Physics21.3 The Dual Nature of Light

Section Learning Objectives

By the end of this section, you will be able to do the following:

  • Describe the Compton effect
  • Calculate the momentum of a photon
  • Explain how photon momentum is used in solar sails
  • Explain the particle-wave duality of light

Teacher Support

Teacher Support

The learning objectives in this section will help your students master the following standards:

  • (3) Scientific processes. The student uses critical thinking, scientific reasoning, and problem solving to make informed decisions within and outside the classroom. The student is expected to:
    • (D) explain the impacts of the scientific contributions of a variety of historical and contemporary scientists on scientific thought and society.
  • (8) Science concepts. The student knows simple examples of atomic, nuclear, and quantum phenomena. The student is expected to:
    • (A) describe the photoelectric effect and the dual nature of light.

Section Key Terms

Compton effect particle-wave duality photon momentum

Photon Momentum

Teacher Support

Teacher Support

Have students read the section heading. Ask them whether photons demonstrate momentum. They should answer yes, based on the photoelectric effect. Ask them what equation they would use to calculate this momentum. Push them on the idea that the momentum equation relies on mass, while photons are massless particles.

Do photons abide by the fundamental properties of physics? Can packets of electromagnetic energy possibly follow the same rules as a ping-pong ball or an electron? Although strange to consider, the answer to both questions is yes.

Despite the odd nature of photons, scientists prior to Einstein had long suspected that the fundamental particle of electromagnetic radiation shared properties with our more macroscopic particles. This is no clearer than when considering the photoelectric effect, where photons knock electrons out of a substance. While it is strange to think of a massless particle exhibiting momentum, it is now a well-established fact within the scientific community. Figure 21.10 shows macroscopic evidence of photon momentum.

There are two images shown. The left image is a drawing of a comet’s path around the sun. The comet’s path is shown with a black line, while the comet is drawn in orange for nine successive moments in time. In each comet drawing, the tail of the comet is seen pointing away from the sun. The right image is a photograph of a comet. In the image, the comet is seen with two tails: one bright white and one a faint blue.
Figure 21.10 The tails of the Hale-Bopp comet point away from the Sun, evidence that light has momentum. Dust emanating from the body of the comet forms this tail. Particles of dust are pushed away from the Sun by light reflecting from them. The blue, ionized gas tail is also produced by photons interacting with atoms in the comet material. (credit: Geoff Chester, U.S. Navy, via Wikimedia Commons)

Figure 21.10 shows a comet with two prominent tails. Comet tails are composed of gases and dust evaporated from the body of the comet and ionized gas. What most people do not know about the tails is that they always point away from the Sun rather than trailing behind the comet. This can be seen in the diagram.

Why would this be the case? The evidence indicates that the dust particles of the comet are forced away from the Sun when photons strike them. Evidently, photons carry momentum in the direction of their motion away from the Sun, and some of this momentum is transferred to dust particles in collisions. The blue tail is caused by the solar wind, a stream of plasma consisting primarily of protons and electrons evaporating from the corona of the Sun.

Momentum, The Compton Effect, and Solar Sails

Momentum is conserved in quantum mechanics, just as it is in relativity and classical physics. Some of the earliest direct experimental evidence of this came from the scattering of X-ray photons by electrons in substances, a phenomenon discovered by American physicist Arthur H. Compton (1892–1962). Around 1923, Compton observed that X-rays reflecting from materials had decreased energy and correctly interpreted this as being due to the scattering of the X-ray photons by electrons. This phenomenon could be handled as a collision between two particles—a photon and an electron at rest in the material. After careful observation, it was found that both energy and momentum were conserved in the collision. See Figure 21.11. For the discovery of this conserved scattering, now known as the Compton effect, Arthur Compton was awarded the Nobel Prize in 1929.

Shortly after the discovery of Compton scattering, the value of the photon momentum, p= h λ , p= h λ ,

was determined by Louis de Broglie. In this equation, called the de Broglie relation, h represents Planck’s constant and λ is the photon wavelength.

The image shows a collision between a photon of light and an electron. The photon of light is shown travelling downward and to the right toward a stationary electron, and then is shown rebounding upward and to the right after the drawn collision. The electron is shown stationary and the moving downward after the collision. Also in the image are the equations E = hf and E' = hf', which correspond to the energy of the photon before and after the collision. Near the electron is the equation KEe = E - E', showing the effect the collision has on the electron’s energy.
Figure 21.11 The Compton effect is the name given to the scattering of a photon by an electron. Energy and momentum are conserved, resulting in a reduction of both for the scattered photon.

Teacher Support

Teacher Support

[BL][OL]Can students think of an equivalent macroscopic event that models both momentum and energy? Discuss the difficulties in modeling this on the particle scale.

[AL]Have the students determine what information would need to be measured in order to show that both quantum energy and momentum were conserved. Additionally, the students could create a set of data that would fulfill the energy and momentum conservation equations used in Figure 21.11.

We can see that photon momentum is small, since p=h/λ. p=h/λ. and h is very small. It is for this reason that we do not ordinarily observe photon momentum. Our mirrors do not recoil when light reflects from them, except perhaps in cartoons. Compton saw the effects of photon momentum because he was observing X-rays, which have a small wavelength and a relatively large momentum, interacting with the lightest of particles, the electron.

Worked Example

Electron and Photon Momentum Compared

(a) Calculate the momentum of a visible photon that has a wavelength of 500 nm. (b) Find the velocity of an electron having the same momentum. (c) What is the energy of the electron, and how does it compare with the energy of the photon?


Finding the photon momentum is a straightforward application of its definition: p=h/λ. p=h/λ. If we find the photon momentum is small, we can assume that an electron with the same momentum will be nonrelativistic, making it easy to find its velocity and kinetic energy from the classical formulas.


Even in huge numbers, the total momentum that photons carry is small. An electron that carries the same momentum as a 500-nm photon will have a 1,460 m/s velocity, which is clearly nonrelativistic. This is borne out by the experimental observation that it takes far less energy to give an electron the same momentum as a photon. That said, for high-energy photons interacting with small masses, photon momentum may be significant. Even on a large scale, photon momentum can have an effect if there are enough of them and if there is nothing to prevent the slow recoil of matter. Comet tails are one example, but there are also proposals to build space sails that use huge low-mass mirrors (made of aluminized Mylar) to reflect sunlight. In the vacuum of space, the mirrors would gradually recoil and could actually accelerate spacecraft within the solar system. See the following figure.

Tips For Success

When determining energies in particle physics, it is more sensible to use the unit eV instead of Joules. Using eV will help you to recognize differences in magnitude more easily and will make calculations simpler. Also, eV is used by scientists to describe the binding energy of particles and their rest mass, so using eV will eliminate the need to convert energy quantities. Finally, eV is a convenient unit when linking electromagnetic forces to particle physics, as one eV is the amount energy given to an electron when placed in a field of 1-V potential difference.

Practice Problems


Find the momentum of a 4.00-cm wavelength microwave photon.

  1. 0.83 × 10−32 kg ⋅ m/s
  2. 1.66 × 10−34 kg ⋅ m/s
  3. 0.83 × 10−34 kg ⋅ m/s
  4. 1.66 × 10-32 kg ⋅ m/s

Calculate the wavelength of a photon that has the same momentum of a proton moving at 1.00 percent of the speed of light.

  1. 2.43 × 10−10 m
  2. 2.43 × 10−12 m
  3. 1.32 × 10−15 m
  4. 1.32 × 10−13 m
There are two images shown. The image on the left is a drawing of a solar sail, which looks like a large parachute carrying a payload (the spacecraft). The solar sail is moving to the left. Blue arrows show photons from the sun moving from the right and striking the solar sail. The image on the right is an overhead photo of the very large solar sail unfurled. There are four people shown at the bottom of the picture for scale. They are approximately one-sixth of the width of the sail.
Figure 21.12 (a) Space sails have been proposed that use the momentum of sunlight reflecting from gigantic low-mass sails to propel spacecraft about the solar system. A Russian test model of this (the Cosmos 1) was launched in 2005, but did not make it into orbit due to a rocket failure. (b) A U.S. version of this, labeled LightSail-1, is scheduled for trial launches in 2016. It will have a 40 m2 sail. (credit: Kim Newton/NASA)

Particle-Wave Duality

Teacher Support

Teacher Support

Prior to this section, have the students create a chart of observations with columns that show that light is like a wave and light is like a particle. Reinforce that light is simply fulfilling both models and that we do not have a perfect model to describe its properties. Light does not choose when to be like a particle and when to be like a wave.

We have long known that EM radiation is like a wave, capable of interference and diffraction. We now see that light can also be modeled as particles—massless photons of discrete energy and momentum. We call this twofold nature the particle-wave duality, meaning that EM radiation has properties of both particles and waves. This may seem contradictory, since we ordinarily deal with large objects that never act like both waves and particles. An ocean wave, for example, looks nothing like a grain of sand. However, this so-called duality is simply a term for properties of the photon analogous to phenomena we can observe directly, on a macroscopic scale. See Figure 21.14. If this term seems strange, it is because we do not ordinarily observe details on the quantum level directly, and our observations yield either particle-like or wave-like properties, but never both simultaneously.

There are two drawings shown. On the left is a drawing of light striking a barrier with two slits. As the light passes through the slits, it creates an interference pattern. The interference pattern projects onto a screen, where the terms max and min are used to show the locations of constructive and destructive wave interference. On the right is an enlarged drawing of a grain of sand. There is an arrow pointing to the grain of sand, with a picture of a photon at the other end of the arrow.
Figure 21.14 (a) The interference pattern for light through a double slit is a wave property understood by analogy to water waves. (b) The properties of photons having quantized energy and momentum and acting as a concentrated unit are understood by analogy to macroscopic particles.

Since we have a particle-wave duality for photons, and since we have seen connections between photons and matter in that both have momentum, it is reasonable to ask whether there is a particle-wave duality for matter as well. If the EM radiation we once thought to be a pure wave has particle properties, is it possible that matter has wave properties? The answer, strangely, is yes. The consequences of this are tremendous, as particle-wave duality has been a constant source of scientific wonder during the twentieth and twenty-first centuries.

Check Your Understanding


What fundamental physics properties were found to be conserved in Compton scattering?

  1. energy and wavelength
  2. energy and momentum
  3. mass and energy
  4. energy and angle

Why do classical or relativistic momentum equations not work in explaining the conservation of momentum that occurs in Compton scattering?

  1. because neither classical nor relativistic momentum equations utilize mass as a variable in their equations
  2. because relativistic momentum equations utilize mass as a variable in their formulas but classical momentum equations do not
  3. because classical momentum equations utilize mass as a variable in their formulas but relativistic momentum equations do not
  4. because both classical and relativistic momentum equations utilize mass as a variable in their formulas
23 .
If solar sails were constructed with more massive materials, how would this influence their effectiveness?
  1. The effect of the momentum would increase due to the decreased inertia of the sails.
  2. The effect of the momentum would reduce due to the decreased inertia of the sails.
  3. The effect of the momentum would increase due to the increased inertia of the sails.
  4. The effect of the momentum would be reduced due to the increased inertia of the sails.

True or false—It is possible to propel a solar sail craft using just particles within the solar wind.

  1. true
  2. false

True or false—Photon momentum more directly supports the wave model of light.

  1. false
  2. true

True or false—wave-particle duality exists for objects on the macroscopic scale.

  1. false
  2. true

What type of electromagnetic radiation was used in Compton scattering?

  1. visible light
  2. ultraviolet radiation
  3. radio waves
  4. X-rays
Order a print copy

As an Amazon Associate we earn from qualifying purchases.


This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: . Changes were made to the original material, including updates to art, structure, and other content updates.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at
Citation information

© Jan 19, 2024 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.