Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Physics

Short Answer

PhysicsShort Answer

Menu
Table of contents
  1. Preface
  2. 1 What is Physics?
    1. Introduction
    2. 1.1 Physics: Definitions and Applications
    3. 1.2 The Scientific Methods
    4. 1.3 The Language of Physics: Physical Quantities and Units
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  3. 2 Motion in One Dimension
    1. Introduction
    2. 2.1 Relative Motion, Distance, and Displacement
    3. 2.2 Speed and Velocity
    4. 2.3 Position vs. Time Graphs
    5. 2.4 Velocity vs. Time Graphs
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  4. 3 Acceleration
    1. Introduction
    2. 3.1 Acceleration
    3. 3.2 Representing Acceleration with Equations and Graphs
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  5. 4 Forces and Newton’s Laws of Motion
    1. Introduction
    2. 4.1 Force
    3. 4.2 Newton's First Law of Motion: Inertia
    4. 4.3 Newton's Second Law of Motion
    5. 4.4 Newton's Third Law of Motion
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  6. 5 Motion in Two Dimensions
    1. Introduction
    2. 5.1 Vector Addition and Subtraction: Graphical Methods
    3. 5.2 Vector Addition and Subtraction: Analytical Methods
    4. 5.3 Projectile Motion
    5. 5.4 Inclined Planes
    6. 5.5 Simple Harmonic Motion
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  7. 6 Circular and Rotational Motion
    1. Introduction
    2. 6.1 Angle of Rotation and Angular Velocity
    3. 6.2 Uniform Circular Motion
    4. 6.3 Rotational Motion
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  8. 7 Newton's Law of Gravitation
    1. Introduction
    2. 7.1 Kepler's Laws of Planetary Motion
    3. 7.2 Newton's Law of Universal Gravitation and Einstein's Theory of General Relativity
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  9. 8 Momentum
    1. Introduction
    2. 8.1 Linear Momentum, Force, and Impulse
    3. 8.2 Conservation of Momentum
    4. 8.3 Elastic and Inelastic Collisions
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  10. 9 Work, Energy, and Simple Machines
    1. Introduction
    2. 9.1 Work, Power, and the Work–Energy Theorem
    3. 9.2 Mechanical Energy and Conservation of Energy
    4. 9.3 Simple Machines
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  11. 10 Special Relativity
    1. Introduction
    2. 10.1 Postulates of Special Relativity
    3. 10.2 Consequences of Special Relativity
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  12. 11 Thermal Energy, Heat, and Work
    1. Introduction
    2. 11.1 Temperature and Thermal Energy
    3. 11.2 Heat, Specific Heat, and Heat Transfer
    4. 11.3 Phase Change and Latent Heat
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  13. 12 Thermodynamics
    1. Introduction
    2. 12.1 Zeroth Law of Thermodynamics: Thermal Equilibrium
    3. 12.2 First law of Thermodynamics: Thermal Energy and Work
    4. 12.3 Second Law of Thermodynamics: Entropy
    5. 12.4 Applications of Thermodynamics: Heat Engines, Heat Pumps, and Refrigerators
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  14. 13 Waves and Their Properties
    1. Introduction
    2. 13.1 Types of Waves
    3. 13.2 Wave Properties: Speed, Amplitude, Frequency, and Period
    4. 13.3 Wave Interaction: Superposition and Interference
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  15. 14 Sound
    1. Introduction
    2. 14.1 Speed of Sound, Frequency, and Wavelength
    3. 14.2 Sound Intensity and Sound Level
    4. 14.3 Doppler Effect and Sonic Booms
    5. 14.4 Sound Interference and Resonance
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  16. 15 Light
    1. Introduction
    2. 15.1 The Electromagnetic Spectrum
    3. 15.2 The Behavior of Electromagnetic Radiation
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  17. 16 Mirrors and Lenses
    1. Introduction
    2. 16.1 Reflection
    3. 16.2 Refraction
    4. 16.3 Lenses
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  18. 17 Diffraction and Interference
    1. Introduction
    2. 17.1 Understanding Diffraction and Interference
    3. 17.2 Applications of Diffraction, Interference, and Coherence
    4. Key Terms
    5. Section Summary
    6. Key Equations
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  19. 18 Static Electricity
    1. Introduction
    2. 18.1 Electrical Charges, Conservation of Charge, and Transfer of Charge
    3. 18.2 Coulomb's law
    4. 18.3 Electric Field
    5. 18.4 Electric Potential
    6. 18.5 Capacitors and Dielectrics
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  20. 19 Electrical Circuits
    1. Introduction
    2. 19.1 Ohm's law
    3. 19.2 Series Circuits
    4. 19.3 Parallel Circuits
    5. 19.4 Electric Power
    6. Key Terms
    7. Section Summary
    8. Key Equations
    9. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    10. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  21. 20 Magnetism
    1. Introduction
    2. 20.1 Magnetic Fields, Field Lines, and Force
    3. 20.2 Motors, Generators, and Transformers
    4. 20.3 Electromagnetic Induction
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  22. 21 The Quantum Nature of Light
    1. Introduction
    2. 21.1 Planck and Quantum Nature of Light
    3. 21.2 Einstein and the Photoelectric Effect
    4. 21.3 The Dual Nature of Light
    5. Key Terms
    6. Section Summary
    7. Key Equations
    8. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Problems
      4. Performance Task
    9. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  23. 22 The Atom
    1. Introduction
    2. 22.1 The Structure of the Atom
    3. 22.2 Nuclear Forces and Radioactivity
    4. 22.3 Half Life and Radiometric Dating
    5. 22.4 Nuclear Fission and Fusion
    6. 22.5 Medical Applications of Radioactivity: Diagnostic Imaging and Radiation
    7. Key Terms
    8. Section Summary
    9. Key Equations
    10. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Performance Task
    11. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  24. 23 Particle Physics
    1. Introduction
    2. 23.1 The Four Fundamental Forces
    3. 23.2 Quarks
    4. 23.3 The Unification of Forces
    5. Key Terms
    6. Section Summary
    7. Chapter Review
      1. Concept Items
      2. Critical Thinking Items
      3. Performance Task
    8. Test Prep
      1. Multiple Choice
      2. Short Answer
      3. Extended Response
  25. A | Reference Tables
  26. Index

Short Answer

16.1 Reflection

30.

Distinguish between reflection and refraction in terms of how a light ray changes when it meets the interface between two media.

  1. Reflected light penetrates the surface whereas refracted light is bent as it travels from one medium to the other.
  2. Reflected light penetrates the surface whereas refracted light travels along a curved path.
  3. Reflected light bounces from the surface whereas refracted light travels along a curved path.
  4. Reflected light bounces from the surface whereas refracted light is bent as it travels from one medium to the other.
31.
Sometimes light may be both reflected and refracted as it meets the surface of a different medium. Identify a material with a surface that when light travels through the air it is both reflected and refracted. Explain how this is possible.
  1. Light passing through air is partially reflected and refracted when it meets a glass surface. It is reflected because glass has a smooth surface; it is refracted while passing into the transparent glass.
  2. Light passing through air is partially reflected and refracted when it meets a glass surface. It is reflected because glass has a rough surface, and it is refracted while passing into the opaque glass.
  3. Light passing through air is partially reflected and refracted when it meets a glass surface. It is reflected because glass has a smooth surface; it is refracted while passing into the opaque glass.
  4. Light passing through air is partially reflected and refracted when it meets a glass surface. It is reflected because glass has a rough surface; it is refracted while passing into the transparent glass.
32.

A concave mirror has a focal length of 5.00 cm. What is the image distance of an object placed 7.00 cm from the center of the mirror?

  1. −17.5 cm
  2. −2.92 cm
  3. 2.92 cm
  4. 17.5 cm
33.

An 8.0 -cm tall object is placed 6.0 cm from a concave mirror with a magnification of –2.0. What are the image height and the image distance?

  1. hi = – 16 cm, di = – 12 cm
  2. hi = – 16 cm, di = 12 cm
  3. hi = 16 cm, di = – 12 cm
  4. hi = 16 cm, di = 12 cm

16.2 Refraction

34.
At what minimum angle does total internal reflection of light occur if it travels from water (n = 1.33) toward ice (n = 1.31)?
  1. 44.6^{\circ}
  2. 26.5^{\circ}
  3. 13.3^{\circ}
  4. 80.1^{\circ}
35.

Water floats on a liquid called carbon tetrachloride. The two liquids do not mix. A light ray passing from water into carbon tetrachloride has an incident angle of 45.0° and an angle of refraction of 40.1°. If the index of refraction of water is 1.33, what is the index of refraction of carbon tetrachloride?

  1. 1.60
  2. 1.49
  3. 1.21
  4. 1.46
36.

Describe what happens to a light ray when it is refracted. Include in your explanation comparison of angles, comparison of refractive indices, and the term normal.

  1. When a ray of light goes from one medium to another medium with a different refractive index, the ray changes its path as a result of interference. The angle between the ray and the normal (the line perpendicular to the surfaces of the two media) is greater in the medium with the greater refractive index.
  2. When a ray of light goes from one medium to another medium with a different refractive index, the ray changes its path as a result of refraction. The angle between the ray and the normal (the line perpendicular to the surfaces of the two media) is less in the medium with the greater refractive index.
  3. When a ray of light goes from one medium to another medium with a different refractive index, the ray does not change its path. The angle between the ray and the normal (the line parallel to the surfaces of the two media) is the same in both media.
  4. When a ray of light goes from one medium to another medium with a different refractive index, the ray changes its path as a result of refraction. The angle between the ray and the normal (the line perpendicular to the surfaces of the two media) is less in the medium with the lower refractive index.

16.3 Lenses

37.

What are two equivalent terms for a lens that always causes light rays to bend away from the principal axis?

  1. a diverging lens or a convex lens
  2. a diverging lens or a concave lens
  3. a converging lens or a concave lens
  4. a converging lens or a convex lens
38.

Define the term virtual image.

  1. A virtual image is an image that cannot be projected onto a screen.
  2. A virtual image is an image that can be projected onto a screen.
  3. A virtual image is an image that is formed on the opposite side of the lens from where the object is placed.
  4. A virtual image is an image that is always bigger than the object.
39.
Compare nearsightedness (myopia) and farsightedness (hyperopia) in terms of focal point.
  1. The eyes of a nearsighted person have focal points beyond the retina. A farsighted person has eyes with focal points between the lens and the retina.
  2. A nearsighted person has eyes with focal points between the lens and the retina. A farsighted person has eyes with focal points beyond the retina.
  3. A nearsighted person has eyes with focal points between the lens and the choroid. A farsighted person has eyes with focal points beyond the choroid.
  4. A nearsighted person has eyes with focal points between the lens and the retina. A farsighted person has eyes with focal points on the retina.
40.
Explain how a converging lens corrects farsightedness.
  1. A converging lens disperses the rays so they focus on the retina.
  2. A converging lens bends the rays closer together so they do not focus on the retina.
  3. A converging lens bends the rays closer together so they focus on the retina.
  4. A converging lens disperses the rays so they do not focus on the retina.
41.
Solve the equation \frac{1}{d_\text{o}} + \frac{1}{d_\text{i}} = \frac{1}{f} for f in such a way that it is not expressed as a reciprocal.
  1. f = \frac{d_\text{o} + d_\text{i}}{d_\text{o} d_\text{i}}
  2. f = \frac{d_\text{o} d_\text{i}}{d_\text{i} + d_\text{o}}
  3. f = \left( d_\text{i} + d_\text{o} \right)
  4. \text{f} = \text{d}_\text{o} \text{d}_\text{i}
42.

What is the magnification of a lens if it produces a 12-cm-high image of a 4 -cm -high object? The image is virtual and erect.

  1. –3.00 –3.00
  2. – 1 3.00 – 1 3.00
  3. 1 3.00 1 3.00
  4. 3.00 3.00
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute Texas Education Agency (TEA). The original material is available at: https://www.texasgateway.org/book/tea-physics . Changes were made to the original material, including updates to art, structure, and other content updates.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/physics/pages/1-introduction
Citation information

© Jan 13, 2023 Texas Education Agency (TEA). The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.