Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

9 • Summary

9 • Summary

Alkynes are less common than alkenes, both in the laboratory and in living organisms, so we haven’t covered them in great detail. The real importance of this chapter is that alkyne chemistry is a useful vehicle for looking at the general strategies used in organic synthesis—the construction of complex molecules in the laboratory.

An alkyne is a hydrocarbon that contains a carbon–carbon triple bond. Alkyne carbon atoms are sp-hybridized, and the triple bond consists of one spsp σ bond and two p–p π bonds. There are relatively few general methods of alkyne synthesis. Two favorable ones are the alkylation of an acetylide anion with a primary alkyl halide and the twofold elimination of HX from a vicinal dihalide.

The chemistry of alkynes is dominated by electrophilic addition reactions, similar to those of alkenes. Alkynes react with HBr and HCl to yield vinylic halides and with Br2 and Cl2 to yield 1,2-dihalides (vicinal dihalides). Alkynes can be hydrated by reaction with aqueous sulfuric acid in the presence of mercury(II) catalyst. The reaction leads to an intermediate enol that immediately tautomerizes to yield a ketone. Because the addition reaction occurs with Markovnikov regiochemistry, a methyl ketone is produced from a terminal alkyne. Alternatively, hydroboration–oxidation of a terminal alkyne yields an aldehyde.

Alkynes can be reduced to yield alkenes and alkanes. Complete reduction of the triple bond over a palladium hydrogenation catalyst yields an alkane; partial reduction by catalytic hydrogenation over a Lindlar catalyst yields a cis alkene. Reduction of the alkyne with lithium in ammonia yields a trans alkene.

Terminal alkynes are weakly acidic. The alkyne hydrogen can be removed by a strong base such as Na+ NH2 to yield an acetylide anion. An acetylide anion acts as a nucleophile and can displace a halide ion from a primary alkyl halide in an alkylation reaction. Acetylide anions are more stable than either alkyl anions or vinylic anions because their negative charge is in a hybrid orbital with 50% s character, allowing the charge to be closer to the nucleus.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Citation information

© Jan 9, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.