Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Organic Chemistry

9.2 Preparation of Alkynes: Elimination Reactions of Dihalides

Organic Chemistry9.2 Preparation of Alkynes: Elimination Reactions of Dihalides

9.2 • Preparation of Alkynes: Elimination Reactions of Dihalides

Alkynes can be prepared by the elimination of HX from alkyl halides in a similar manner as alkenes (Section 8.1). Treatment of a 1,2-dihaloalkane (called a vicinal dihalide) with an excess amount of a strong base such as KOH or NaNH2 results in a twofold elimination of HX and formation of an alkyne. As with the elimination of HX to form an alkene, we’ll defer a full discussion of this topic and the relevant reaction mechanisms to Chapter 11.

The starting vicinal dihalides are themselves readily available by addition of Br2 or Cl2 to alkenes. Thus, the overall halogenation/dehydrohalogenation sequence makes it possible to go from an alkene to an alkyne. For example, diphenylethylene is converted into diphenylacetylene by reaction with Br2 and subsequent base treatment.

Trans-1,2-diphenylethylene reacts with bromine in chloromethane to give 1,2-dibromo-1,2-diphenylethane. It reacts with KOH in ethanol to give diphenylacetylene (85%), water, and KBr.

The twofold dehydrohalogenation takes place through a vinylic halide intermediate, which suggests that vinylic halides themselves should give alkynes when treated with strong base. (A vinylic substituent is one that is attached to a double-bond.) This is indeed the case. For example:

The figure shows (Z)-3-chloro-2-buten-1-ol reacts with two moles of sodium amide and hydronium ion to form 2-butyn-1-ol.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Citation information

© Jan 9, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.