Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Organic Chemistry

Chemistry Matters—β-Lactam Antibiotics

Organic ChemistryChemistry Matters—β-Lactam Antibiotics

21 • Chemistry Matters

21 • Chemistry Matters

You should never underestimate the value of hard work and logical thinking, but it’s also true that blind luck often plays a role in most real scientific breakthroughs. What has been called “the supreme example of luck in all scientific history” occurred in the late summer of 1928, when the Scottish bacteriologist Alexander Fleming went on vacation, leaving in his lab a culture plate recently inoculated with the bacterium Staphylococcus aureus.

While Fleming was away, an extraordinary chain of events occurred. First, a nine-day cold spell lowered the laboratory temperature to a point where the Staphylococcus in the culture plate could not grow. During this time, spores from a colony of the mold Penicillium notatum, being grown in a lab on the floor below, wafted up into Fleming’s lab and landed in the culture plate. The temperature then rose, and both Staphylococcus and Penicillium began to grow. On returning from vacation, Fleming discarded the plate into a tray of antiseptic, intending to sterilize it. Evidently, though, the plate did not sink deeply enough into the antiseptic, because when Fleming happened to glance at it a few days later, what he saw changed the course of history. He noticed that the growing Penicillium mold appeared to dissolve the colonies of staphylococci.

Fleming realized that the Penicillium mold must be producing a chemical that killed the Staphylococcus bacteria, and he spent several years trying to isolate the substance. Finally, in 1939, the Australian pathologist Howard Florey and the German refugee Ernst Chain managed to isolate the active substance, called penicillin. The dramatic ability of penicillin to cure infections in mice was soon demonstrated, and successful tests in humans followed shortly thereafter. By 1943, penicillin was being produced on a large scale for military use in World War II, and by 1944 it was being used on civilians. Fleming, Florey, and Chain shared the 1945 Nobel Prize in Physiology or Medicine.

Now called benzylpenicillin, or penicillin G, the substance first discovered by Fleming is but one member of a large class of so-called β-lactam antibiotics, compounds with a four-membered lactam (cyclic amide) ring. The four-membered lactam ring is fused to a five-membered, sulfur-containing ring, and the carbon atom next to the lactam carbonyl group is bonded to an acylamino substituent, RCONH–. This acylamino side chain can be varied in the laboratory to provide many hundreds of penicillin analogs with different biological activity profiles. Ampicillin, for instance, has an α-aminophenylacetamido substituent [PhCH(NH2)CONH–].

The structure shows benzylpenicillin (Penicillin G). The beta-lactam ring is highlighted in pink color. Acylamino substituent is shown in green color.

Closely related to the penicillins are the cephalosporins, a group of β-lactam antibiotics that contain an unsaturated, six-membered, sulfur-containing ring. Cephalexin, marketed under the trade name Keflex, is an example. Cephalosporins generally have much greater antibacterial activity than penicillins, particularly against resistant strains of bacteria.

The structure shows cephalexin (a cephalosporin). A beta-lactam ring is present in the structure.

The biological activity of penicillins and cephalosporins is due to the presence of the strained β-lactam ring, which reacts with and deactivates the transpeptidase enzyme needed to synthesize and repair bacterial cell walls. With the wall either incomplete or weakened, the bacterial cell ruptures and dies.

The reaction schee shows the conversion of the active enzyme transpeptidase to an inactive enzyme. An intermediate is formed in the pathway is enclosed in parentheses.
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Citation information

© Aug 5, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.