Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

11 • Summary

11 • Summary

The reaction of an alkyl halide or tosylate with a nucleophile/base results either in substitution or in elimination. The resultant nucleophilic substitution and base-induced elimination reactions are two of the most widely occurring and versatile reaction types in organic chemistry, both in the laboratory and in biological pathways.

Nucleophilic substitutions are of two types: SN2 reactions and SN1 reactions. In the SN2 reaction, the entering nucleophile approaches the halide from a direction 180° away from the leaving group, resulting in an umbrella-like inversion of configuration at the carbon atom. The reaction is kinetically second-order and is strongly inhibited by increasing steric bulk of the reactants. Thus, SN2 reactions are favored for primary and secondary substrates.

In the SN1 reaction, the substrate spontaneously dissociates to a carbocation in a slow rate-limiting step, followed by a rapid reaction with the nucleophile. As a result, SN1 reactions are kinetically first-order and take place with substantial racemization of configuration at the carbon atom. They are most favored for tertiary substrates. Both SN1 and SN2 reactions occur in biological pathways, although the leaving group is typically a diphosphate ion rather than a halide.

Eliminations of alkyl halides to yield alkenes occur by three mechanisms: E2 reactions, E1 reactions, and E1cB reactions, which differ in the timing of C–H and C–X bond-breaking. In the E2 reaction, C–H and C–X bond-breaking occur simultaneously when a base abstracts H+ from one carbon while the leaving group departs from the neighboring carbon. The reaction takes place preferentially through an anti periplanar transition state in which the four reacting atoms—hydrogen, two carbons, and leaving group—are in the same plane. The reaction shows second-order kinetics and a deuterium isotope effect, and occurs when a secondary or tertiary substrate is treated with a strong base. These elimination reactions usually give a mixture of alkene products in which the more highly substituted alkene predominates (Zaitsev’s rule).

In the E1 reaction, C–X bond-breaking occurs first. The substrate dissociates to yield a carbocation in the slow rate-limiting step before losing H+ from an adjacent carbon in a second step. The reaction shows first-order kinetics and no deuterium isotope effect and occurs when a tertiary substrate reacts in polar, nonbasic solution.

In the E1cB reaction, C–H bond-breaking occurs first. A base abstracts a proton to give a carbanion, followed by loss of the leaving group from the adjacent carbon in a second step. The reaction is favored when the leaving group is two carbons removed from a carbonyl, which stabilizes the intermediate anion by resonance. Biological elimination reactions typically occur by this E1cB mechanism.

In general, substrates react in the following way:

Schematic of alkyl halide reactions. Primary substrates undergo S N 2, secondary undergo S N 2 (E 2 with strong bases), and tertiary undergo E2 unless nonbasic solvent.
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Citation information

© Aug 5, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.