Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

10 • Summary

10 • Summary

Alkyl halides are not often found in terrestrial organisms, but the kinds of reactions they undergo are among the most important and well-studied reaction types in organic chemistry. In this chapter, we saw how to name and prepare alkyl halides, and we’ll soon make a detailed study of their substitution and elimination reactions.

Simple alkyl halides can be prepared by radical halogenation of alkanes, but mixtures of products usually result. The reactivity order of alkanes toward halogenation is identical to the stability order of radicals: R3C· > R2CH· > RCH2·. Alkyl halides can also be prepared from alkenes by reaction with N-bromosuccinimide (NBS) to give the product of allylic bromination. The NBS bromination of alkenes takes place through an intermediate allylic radical, which is stabilized by resonance.

Alcohols react with HX to form alkyl halides, but the reaction works well only for tertiary alcohols, R3COH. Primary and secondary alkyl halides are normally prepared from alcohols using either SOCl2, PBr3, or HF in pyridine. Alkyl halides react with magnesium in ether solution to form organomagnesium halides, called Grignard reagents (RMgX), which are both nucleophilic and strongly basic.

Alkyl halides also react with lithium metal to form organolithium reagents, RLi. In the presence of CuI, these form diorganocoppers, or Gilman reagents (LiR2Cu). Gilman reagents react with organohalides to yield coupled hydrocarbon products.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/organic-chemistry/pages/1-why-this-chapter
Citation information

© Jan 9, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.