Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Microbiology

26.1 Anatomy of the Nervous System

Microbiology26.1 Anatomy of the Nervous System

Menu
Table of contents
  1. Preface
  2. 1 An Invisible World
    1. Introduction
    2. 1.1 What Our Ancestors Knew
    3. 1.2 A Systematic Approach
    4. 1.3 Types of Microorganisms
    5. Summary
    6. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  3. 2 How We See the Invisible World
    1. Introduction
    2. 2.1 The Properties of Light
    3. 2.2 Peering Into the Invisible World
    4. 2.3 Instruments of Microscopy
    5. 2.4 Staining Microscopic Specimens
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  4. 3 The Cell
    1. Introduction
    2. 3.1 Spontaneous Generation
    3. 3.2 Foundations of Modern Cell Theory
    4. 3.3 Unique Characteristics of Prokaryotic Cells
    5. 3.4 Unique Characteristics of Eukaryotic Cells
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  5. 4 Prokaryotic Diversity
    1. Introduction
    2. 4.1 Prokaryote Habitats, Relationships, and Microbiomes
    3. 4.2 Proteobacteria
    4. 4.3 Nonproteobacteria Gram-Negative Bacteria and Phototrophic Bacteria
    5. 4.4 Gram-Positive Bacteria
    6. 4.5 Deeply Branching Bacteria
    7. 4.6 Archaea
    8. Summary
    9. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  6. 5 The Eukaryotes of Microbiology
    1. Introduction
    2. 5.1 Unicellular Eukaryotic Parasites
    3. 5.2 Parasitic Helminths
    4. 5.3 Fungi
    5. 5.4 Algae
    6. 5.5 Lichens
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  7. 6 Acellular Pathogens
    1. Introduction
    2. 6.1 Viruses
    3. 6.2 The Viral Life Cycle
    4. 6.3 Isolation, Culture, and Identification of Viruses
    5. 6.4 Viroids, Virusoids, and Prions
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  8. 7 Microbial Biochemistry
    1. Introduction
    2. 7.1 Organic Molecules
    3. 7.2 Carbohydrates
    4. 7.3 Lipids
    5. 7.4 Proteins
    6. 7.5 Using Biochemistry to Identify Microorganisms
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. True/False
      3. Matching
      4. Fill in the Blank
      5. Short Answer
      6. Critical Thinking
  9. 8 Microbial Metabolism
    1. Introduction
    2. 8.1 Energy, Matter, and Enzymes
    3. 8.2 Catabolism of Carbohydrates
    4. 8.3 Cellular Respiration
    5. 8.4 Fermentation
    6. 8.5 Catabolism of Lipids and Proteins
    7. 8.6 Photosynthesis
    8. 8.7 Biogeochemical Cycles
    9. Summary
    10. Review Questions
      1. Multiple Choice
      2. True/False
      3. Matching
      4. Fill in the Blank
      5. Short Answer
      6. Critical Thinking
  10. 9 Microbial Growth
    1. Introduction
    2. 9.1 How Microbes Grow
    3. 9.2 Oxygen Requirements for Microbial Growth
    4. 9.3 The Effects of pH on Microbial Growth
    5. 9.4 Temperature and Microbial Growth
    6. 9.5 Other Environmental Conditions that Affect Growth
    7. 9.6 Media Used for Bacterial Growth
    8. Summary
    9. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  11. 10 Biochemistry of the Genome
    1. Introduction
    2. 10.1 Using Microbiology to Discover the Secrets of Life
    3. 10.2 Structure and Function of DNA
    4. 10.3 Structure and Function of RNA
    5. 10.4 Structure and Function of Cellular Genomes
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Matching
      4. Fill in the Blank
      5. Short Answer
      6. Critical Thinking
  12. 11 Mechanisms of Microbial Genetics
    1. Introduction
    2. 11.1 The Functions of Genetic Material
    3. 11.2 DNA Replication
    4. 11.3 RNA Transcription
    5. 11.4 Protein Synthesis (Translation)
    6. 11.5 Mutations
    7. 11.6 How Asexual Prokaryotes Achieve Genetic Diversity
    8. 11.7 Gene Regulation: Operon Theory
    9. Summary
    10. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  13. 12 Modern Applications of Microbial Genetics
    1. Introduction
    2. 12.1 Microbes and the Tools of Genetic Engineering
    3. 12.2 Visualizing and Characterizing DNA, RNA, and Protein
    4. 12.3 Whole Genome Methods and Pharmaceutical Applications of Genetic Engineering
    5. 12.4 Gene Therapy
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  14. 13 Control of Microbial Growth
    1. Introduction
    2. 13.1 Controlling Microbial Growth
    3. 13.2 Using Physical Methods to Control Microorganisms
    4. 13.3 Using Chemicals to Control Microorganisms
    5. 13.4 Testing the Effectiveness of Antiseptics and Disinfectants
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  15. 14 Antimicrobial Drugs
    1. Introduction
    2. 14.1 History of Chemotherapy and Antimicrobial Discovery
    3. 14.2 Fundamentals of Antimicrobial Chemotherapy
    4. 14.3 Mechanisms of Antibacterial Drugs
    5. 14.4 Mechanisms of Other Antimicrobial Drugs
    6. 14.5 Drug Resistance
    7. 14.6 Testing the Effectiveness of Antimicrobials
    8. 14.7 Current Strategies for Antimicrobial Discovery
    9. Summary
    10. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  16. 15 Microbial Mechanisms of Pathogenicity
    1. Introduction
    2. 15.1 Characteristics of Infectious Disease
    3. 15.2 How Pathogens Cause Disease
    4. 15.3 Virulence Factors of Bacterial and Viral Pathogens
    5. 15.4 Virulence Factors of Eukaryotic Pathogens
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  17. 16 Disease and Epidemiology
    1. Introduction
    2. 16.1 The Language of Epidemiologists
    3. 16.2 Tracking Infectious Diseases
    4. 16.3 Modes of Disease Transmission
    5. 16.4 Global Public Health
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  18. 17 Innate Nonspecific Host Defenses
    1. Introduction
    2. 17.1 Physical Defenses
    3. 17.2 Chemical Defenses
    4. 17.3 Cellular Defenses
    5. 17.4 Pathogen Recognition and Phagocytosis
    6. 17.5 Inflammation and Fever
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  19. 18 Adaptive Specific Host Defenses
    1. Introduction
    2. 18.1 Overview of Specific Adaptive Immunity
    3. 18.2 Major Histocompatibility Complexes and Antigen-Presenting Cells
    4. 18.3 T Lymphocytes and Cellular Immunity
    5. 18.4 B Lymphocytes and Humoral Immunity
    6. 18.5 Vaccines
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  20. 19 Diseases of the Immune System
    1. Introduction
    2. 19.1 Hypersensitivities
    3. 19.2 Autoimmune Disorders
    4. 19.3 Organ Transplantation and Rejection
    5. 19.4 Immunodeficiency
    6. 19.5 Cancer Immunobiology and Immunotherapy
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  21. 20 Laboratory Analysis of the Immune Response
    1. Introduction
    2. 20.1 Polyclonal and Monoclonal Antibody Production
    3. 20.2 Detecting Antigen-Antibody Complexes
    4. 20.3 Agglutination Assays
    5. 20.4 EIAs and ELISAs
    6. 20.5 Fluorescent Antibody Techniques
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  22. 21 Skin and Eye Infections
    1. Introduction
    2. 21.1 Anatomy and Normal Microbiota of the Skin and Eyes
    3. 21.2 Bacterial Infections of the Skin and Eyes
    4. 21.3 Viral Infections of the Skin and Eyes
    5. 21.4 Mycoses of the Skin
    6. 21.5 Protozoan and Helminthic Infections of the Skin and Eyes
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  23. 22 Respiratory System Infections
    1. Introduction
    2. 22.1 Anatomy and Normal Microbiota of the Respiratory Tract
    3. 22.2 Bacterial Infections of the Respiratory Tract
    4. 22.3 Viral Infections of the Respiratory Tract
    5. 22.4 Respiratory Mycoses
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  24. 23 Urogenital System Infections
    1. Introduction
    2. 23.1 Anatomy and Normal Microbiota of the Urogenital Tract
    3. 23.2 Bacterial Infections of the Urinary System
    4. 23.3 Bacterial Infections of the Reproductive System
    5. 23.4 Viral Infections of the Reproductive System
    6. 23.5 Fungal Infections of the Reproductive System
    7. 23.6 Protozoan Infections of the Urogenital System
    8. Summary
    9. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  25. 24 Digestive System Infections
    1. Introduction
    2. 24.1 Anatomy and Normal Microbiota of the Digestive System
    3. 24.2 Microbial Diseases of the Mouth and Oral Cavity
    4. 24.3 Bacterial Infections of the Gastrointestinal Tract
    5. 24.4 Viral Infections of the Gastrointestinal Tract
    6. 24.5 Protozoan Infections of the Gastrointestinal Tract
    7. 24.6 Helminthic Infections of the Gastrointestinal Tract
    8. Summary
    9. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  26. 25 Circulatory and Lymphatic System Infections
    1. Introduction
    2. 25.1 Anatomy of the Circulatory and Lymphatic Systems
    3. 25.2 Bacterial Infections of the Circulatory and Lymphatic Systems
    4. 25.3 Viral Infections of the Circulatory and Lymphatic Systems
    5. 25.4 Parasitic Infections of the Circulatory and Lymphatic Systems
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  27. 26 Nervous System Infections
    1. Introduction
    2. 26.1 Anatomy of the Nervous System
    3. 26.2 Bacterial Diseases of the Nervous System
    4. 26.3 Acellular Diseases of the Nervous System
    5. 26.4 Fungal and Parasitic Diseases of the Nervous System
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  28. A | Fundamentals of Physics and Chemistry Important to Microbiology
  29. B | Mathematical Basics
  30. C | Metabolic Pathways
  31. D | Taxonomy of Clinically Relevant Microorganisms
  32. E | Glossary
  33. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
    22. Chapter 22
    23. Chapter 23
    24. Chapter 24
    25. Chapter 25
    26. Chapter 26
  34. Index

Learning Objectives

By the end of this section, you will be able to:

  • Describe the major anatomical features of the nervous system
  • Explain why there is no normal microbiota of the nervous system
  • Explain how microorganisms overcome defenses of the nervous system to cause infection
  • Identify and describe general symptoms associated with various infections of the nervous system

Clinical Focus

Part 1

David is a 35-year-old carpenter from New Jersey. A year ago, he was diagnosed with Crohn’s disease, a chronic inflammatory bowel disease that has no known cause. He has been taking a prescription corticosteroid to manage the condition, and the drug has been highly effective in keeping his symptoms at bay. However, David recently fell ill and decided to visit his primary care physician. His symptoms included a fever, a persistent cough, and shortness of breath. His physician ordered a chest X-ray, which revealed consolidation of the right lung. The doctor prescribed a course of levofloxacin and told David to come back in a week if he did not feel better.

  • What type of drug is levofloxacin?
  • What type of microbes would this drug be effective against?
  • What type of infection is consistent with David’s symptoms?

Jump to the next Clinical Focus box.

The human nervous system can be divided into two interacting subsystems: the peripheral nervous system (PNS) and the central nervous system (CNS). The CNS consists of the brain and spinal cord. The peripheral nervous system is an extensive network of nerves connecting the CNS to the muscles and sensory structures. The relationship of these systems is illustrated in Figure 26.2.

The Central Nervous System

The brain is the most complex and sensitive organ in the body. It is responsible for all functions of the body, including serving as the coordinating center for all sensations, mobility, emotions, and intellect. Protection for the brain is provided by the bones of the skull, which in turn are covered by the scalp, as shown in Figure 26.3. The scalp is composed of an outer layer of skin, which is loosely attached to the aponeurosis, a flat, broad tendon layer that anchors the superficial layers of the skin. The periosteum, below the aponeurosis, firmly encases the bones of the skull and provides protection, nutrition to the bone, and the capacity for bone repair. Below the boney layer of the skull are three layers of membranes called meninges that surround the brain. The relative positions of these meninges are shown in Figure 26.3. The meningeal layer closest to the bones of the skull is called the dura mater (literally meaning tough mother). Below the dura mater lies the arachnoid mater (literally spider-like mother). The innermost meningeal layer is a delicate membrane called the pia mater (literally tender mother). Unlike the other meningeal layers, the pia mater firmly adheres to the convoluted surface of the brain. Between the arachnoid mater and pia mater is the subarachnoid space. The subarachnoid space within this region is filled with cerebrospinal fluid (CSF). This watery fluid is produced by cells of the choroid plexus—areas in each ventricle of the brain that consist of cuboidal epithelial cells surrounding dense capillary beds. The CSF serves to deliver nutrients and remove waste from neural tissues.

Diagram of the nervous system. The central nervous system is made of the brain and spinal cord. The peripheral nervous system is made of ganglions (near the spinal cord) and nerves that run throughout the body.
Figure 26.2 The essential components of the human nervous system are shown in this illustration. The central nervous system (CNS) consists of the brain and spinal cord. It connects to the peripheral nervous system (PNS), a network of nerves that extends throughout the body.
Diagram of layers around the brain. The pia mater is a thin covering that is on the surface of the brain. Around that is cerebrospinal fluid (CSF), a region that contains blood vessels. The arachnoid maintains this space. The dura mater is the next layer out and is thick. These three layers (dura mater, arachnoid, and pia mater) make up the meninges. The next layer out is bone. The next layer is a thn periosteum, then a thin aponeurosis, and finally skin.
Figure 26.3 The layers of tissue surrounding the human brain include three meningeal membranes: the dura mater, arachnoid mater, and pia mater. (credit: modification of work by National Institutes of Health)

The Blood-Brain Barrier

The tissues of the CNS have extra protection in that they are not exposed to blood or the immune system in the same way as other tissues. The blood vessels that supply the brain with nutrients and other chemical substances lie on top of the pia mater. The capillaries associated with these blood vessels in the brain are less permeable than those in other locations in the body. The capillary endothelial cells form tight junctions that control the transfer of blood components to the brain. In addition, cranial capillaries have far fewer fenestra (pore-like structures that are sealed by a membrane) and pinocytotic vesicles than other capillaries. As a result, materials in the circulatory system have a very limited ability to interact with the CNS directly. This phenomenon is referred to as the blood-brain barrier.

The blood-brain barrier protects the cerebrospinal fluid from contamination, and can be quite effective at excluding potential microbial pathogens. As a consequence of these defenses, there is no normal microbiota in the cerebrospinal fluid. The blood-brain barrier also inhibits the movement of many drugs into the brain, particularly compounds that are not lipid soluble. This has profound ramifications for treatments involving infections of the CNS, because it is difficult for drugs to cross the blood-brain barrier to interact with pathogens that cause infections.

The spinal cord also has protective structures similar to those surrounding the brain. Within the bones of the vertebrae are meninges of dura mater (sometimes called the dural sheath), arachnoid mater, pia mater, and a blood-spinal cord barrier that controls the transfer of blood components from blood vessels associated with the spinal cord.

To cause an infection in the CNS, pathogens must successfully breach the blood-brain barrier or blood-spinal cord barrier. Various pathogens employ different virulence factors and mechanisms to achieve this, but they can generally be grouped into four categories: intercellular (also called paracellular), transcellular, leukocyte facilitated, and nonhematogenous. Intercellular entry involves the use of microbial virulence factors, toxins, or inflammation-mediated processes to pass between the cells of the blood-brain barrier. In transcellular entry, the pathogen passes through the cells of the blood-brain barrier using virulence factors that allow it to adhere to and trigger uptake by vacuole- or receptor-mediated mechanisms. Leukocyte-facilitated entry is a Trojan-horse mechanism that occurs when a pathogen infects peripheral blood leukocytes to directly enter the CNS. Nonhematogenous entry allows pathogens to enter the brain without encountering the blood-brain barrier; it occurs when pathogens travel along either the olfactory or trigeminal cranial nerves that lead directly into the CNS.

Check Your Understanding

  • What is the primary function of the blood-brain barrier?

The Peripheral Nervous System

The PNS is formed of the nerves that connect organs, limbs, and other anatomic structures of the body to the brain and spinal cord. Unlike the brain and spinal cord, the PNS is not protected by bone, meninges, or a blood barrier, and, as a consequence, the nerves of the PNS are much more susceptible to injury and infection. Microbial damage to peripheral nerves can lead to tingling or numbness known as neuropathy. These symptoms can also be produced by trauma and noninfectious causes such as drugs or chronic diseases like diabetes.

The Cells of the Nervous System

Tissues of the PNS and CNS are formed of cells called glial cells (neuroglial cells) and neurons (nerve cells). Glial cells assist in the organization of neurons, provide a scaffold for some aspects of neuronal function, and aid in recovery from neural injury.

Neurons are specialized cells found throughout the nervous system that transmit signals through the nervous system using electrochemical processes. The basic structure of a neuron is shown in Figure 26.4. The cell body (or soma) is the metabolic center of the neuron and contains the nucleus and most of the cell’s organelles. The many finely branched extensions from the soma are called dendrites. The soma also produces an elongated extension, called the axon, which is responsible for the transmission of electrochemical signals through elaborate ion transport processes. Axons of some types of neurons can extend up to one meter in length in the human body. To facilitate electrochemical signal transmission, some neurons have a myelin sheath surrounding the axon. Myelin, formed from the cell membranes of glial cells like the Schwann cells in the PNS and oligodendrocytes in the CNS, surrounds and insulates the axon, significantly increasing the speed of electrochemical signal transmission along the axon. The end of an axon forms numerous branches that end in bulbs called synaptic terminals. Neurons form junctions with other cells, such as another neuron, with which they exchange signals. The junctions, which are actually gaps between neurons, are referred to as synapses. At each synapse, there is a presynaptic neuron and a postsynaptic neuron (or other cell). The synaptic terminals of the axon of the presynaptic terminal form the synapse with the dendrites, soma, or sometimes the axon of the postsynaptic neuron, or a part of another type of cell such as a muscle cell. The synaptic terminals contain vesicles filled with chemicals called neurotransmitters. When the electrochemical signal moving down the axon reaches the synapse, the vesicles fuse with the membrane, and neurotransmitters are released, which diffuse across the synapse and bind to receptors on the membrane of the postsynaptic cell, potentially initiating a response in that cell. That response in the postsynaptic cell might include further propagation of an electrochemical signal to transmit information or contraction of a muscle fiber.

a) A drawing of a neuron. The cell body contains the nucleus and has short projections called dendrite. The cell also has a long projection called an axon wrapped in a layer called the myelin sheath. The myelin sheath layer covers most of the axon but also produces uncovered spaces at set intervals; each space is called a node of Ranvier. The myelin sheath is made from oligodendrocytes. At the end of the axon is a synapse. B) Diagram of a synapse. This is the region where two neurons come together (but they do not touch). The presynaptic neuron releases neurotransmitters into the synapse space. The post synaptic neuron has receptors on which the neurotransmitters attach.
Figure 26.4 (a) A myelinated neuron is associated with oligodendrocytes. Oligodendrocytes are a type of glial cell that forms the myelin sheath in the CNS that insulates the axon so that electrochemical nerve impulses are transferred more efficiently. (b) A synapse consists of the axonal end of the presynaptic neuron (top) that releases neurotransmitters that cross the synaptic space (or cleft) and bind to receptors on dendrites of the postsynaptic neuron (bottom).

Check Your Understanding

  • What cells are associated with neurons, and what is their function?
  • What is the structure and function of a synapse?

Meningitis and Encephalitis

Although the skull provides the brain with an excellent defense, it can also become problematic during infections. Any swelling of the brain or meninges that results from inflammation can cause intracranial pressure, leading to severe damage of the brain tissues, which have limited space to expand within the inflexible bones of the skull. The term meningitis is used to describe an inflammation of the meninges. Typical symptoms can include severe headache, fever, photophobia (increased sensitivity to light), stiff neck, convulsions, and confusion. An inflammation of brain tissue is called encephalitis, and patients exhibit signs and symptoms similar to those of meningitis in addition to lethargy, seizures, and personality changes. When inflammation affects both the meninges and the brain tissue, the condition is called meningoencephalitis. All three forms of inflammation are serious and can lead to blindness, deafness, coma, and death.

Meningitis and encephalitis can be caused by many different types of microbial pathogens. However, these conditions can also arise from noninfectious causes such as head trauma, some cancers, and certain drugs that trigger inflammation. To determine whether the inflammation is caused by a pathogen, a lumbar puncture is performed to obtain a sample of CSF. If the CSF contains increased levels of white blood cells and abnormal glucose and protein levels, this indicates that the inflammation is a response to an infectioninflinin.

Check Your Understanding

  • What are the two types of inflammation that can impact the CNS?
  • Why do both forms of inflammation have such serious consequences?

Micro Connections

Guillain-Barré Syndrome

Guillain-Barré syndrome (GBS) is a rare condition that can be preceded by a viral or bacterial infection that results in an autoimmune reaction against myelinated nerve cells. The destruction of the myelin sheath around these neurons results in a loss of sensation and function. The first symptoms of this condition are tingling and weakness in the affected tissues. The symptoms intensify over a period of several weeks and can culminate in complete paralysis. Severe cases can be life-threatening. Infections by several different microbial pathogens, including Campylobacter jejuni (the most common risk factor), cytomegalovirus, Epstein-Barr virus, varicella-zoster virus, Mycoplasma pneumoniae,1 and Zika virus2 have been identified as triggers for GBS. Anti-myelin antibodies from patients with GBS have been demonstrated to also recognize C. jejuni. It is possible that cross-reactive antibodies, antibodies that react with similar antigenic sites on different proteins, might be formed during an infection and may lead to this autoimmune response.

GBS is solely identified by the appearance of clinical symptoms. There are no other diagnostic tests available. Fortunately, most cases spontaneously resolve within a few months with few permanent effects, as there is no available vaccine. GBS can be treated by plasmapheresis. In this procedure, the patient’s plasma is filtered from their blood, removing autoantibodies.

Footnotes

  • 1Yuki, Nobuhiro and Hans-Peter Hartung, “Guillain–Barré Syndrome,” New England Journal of Medicine 366, no. 24 (2012): 2294-304.
  • 2Cao-Lormeau, Van-Mai, Alexandre Blake, Sandrine Mons, Stéphane Lastère, Claudine Roche, Jessica Vanhomwegen, Timothée Dub et al., “Guillain-Barré Syndrome Outbreak Associated with Zika Virus Infection in French Polynesia: A Case-Control Study,” The Lancet 387, no. 10027 (2016): 1531-9.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/microbiology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/microbiology/pages/1-introduction
Citation information

© Jul 5, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.