Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Microbiology

15.4 Virulence Factors of Eukaryotic Pathogens

Microbiology15.4 Virulence Factors of Eukaryotic Pathogens

Table of contents
  1. Preface
  2. 1 An Invisible World
    1. Introduction
    2. 1.1 What Our Ancestors Knew
    3. 1.2 A Systematic Approach
    4. 1.3 Types of Microorganisms
    5. Summary
    6. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  3. 2 How We See the Invisible World
    1. Introduction
    2. 2.1 The Properties of Light
    3. 2.2 Peering Into the Invisible World
    4. 2.3 Instruments of Microscopy
    5. 2.4 Staining Microscopic Specimens
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  4. 3 The Cell
    1. Introduction
    2. 3.1 Spontaneous Generation
    3. 3.2 Foundations of Modern Cell Theory
    4. 3.3 Unique Characteristics of Prokaryotic Cells
    5. 3.4 Unique Characteristics of Eukaryotic Cells
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  5. 4 Prokaryotic Diversity
    1. Introduction
    2. 4.1 Prokaryote Habitats, Relationships, and Microbiomes
    3. 4.2 Proteobacteria
    4. 4.3 Nonproteobacteria Gram-Negative Bacteria and Phototrophic Bacteria
    5. 4.4 Gram-Positive Bacteria
    6. 4.5 Deeply Branching Bacteria
    7. 4.6 Archaea
    8. Summary
    9. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  6. 5 The Eukaryotes of Microbiology
    1. Introduction
    2. 5.1 Unicellular Eukaryotic Parasites
    3. 5.2 Parasitic Helminths
    4. 5.3 Fungi
    5. 5.4 Algae
    6. 5.5 Lichens
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  7. 6 Acellular Pathogens
    1. Introduction
    2. 6.1 Viruses
    3. 6.2 The Viral Life Cycle
    4. 6.3 Isolation, Culture, and Identification of Viruses
    5. 6.4 Viroids, Virusoids, and Prions
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  8. 7 Microbial Biochemistry
    1. Introduction
    2. 7.1 Organic Molecules
    3. 7.2 Carbohydrates
    4. 7.3 Lipids
    5. 7.4 Proteins
    6. 7.5 Using Biochemistry to Identify Microorganisms
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. True/False
      3. Matching
      4. Fill in the Blank
      5. Short Answer
      6. Critical Thinking
  9. 8 Microbial Metabolism
    1. Introduction
    2. 8.1 Energy, Matter, and Enzymes
    3. 8.2 Catabolism of Carbohydrates
    4. 8.3 Cellular Respiration
    5. 8.4 Fermentation
    6. 8.5 Catabolism of Lipids and Proteins
    7. 8.6 Photosynthesis
    8. 8.7 Biogeochemical Cycles
    9. Summary
    10. Review Questions
      1. Multiple Choice
      2. True/False
      3. Matching
      4. Fill in the Blank
      5. Short Answer
      6. Critical Thinking
  10. 9 Microbial Growth
    1. Introduction
    2. 9.1 How Microbes Grow
    3. 9.2 Oxygen Requirements for Microbial Growth
    4. 9.3 The Effects of pH on Microbial Growth
    5. 9.4 Temperature and Microbial Growth
    6. 9.5 Other Environmental Conditions that Affect Growth
    7. 9.6 Media Used for Bacterial Growth
    8. Summary
    9. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  11. 10 Biochemistry of the Genome
    1. Introduction
    2. 10.1 Using Microbiology to Discover the Secrets of Life
    3. 10.2 Structure and Function of DNA
    4. 10.3 Structure and Function of RNA
    5. 10.4 Structure and Function of Cellular Genomes
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Matching
      4. Fill in the Blank
      5. Short Answer
      6. Critical Thinking
  12. 11 Mechanisms of Microbial Genetics
    1. Introduction
    2. 11.1 The Functions of Genetic Material
    3. 11.2 DNA Replication
    4. 11.3 RNA Transcription
    5. 11.4 Protein Synthesis (Translation)
    6. 11.5 Mutations
    7. 11.6 How Asexual Prokaryotes Achieve Genetic Diversity
    8. 11.7 Gene Regulation: Operon Theory
    9. Summary
    10. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  13. 12 Modern Applications of Microbial Genetics
    1. Introduction
    2. 12.1 Microbes and the Tools of Genetic Engineering
    3. 12.2 Visualizing and Characterizing DNA, RNA, and Protein
    4. 12.3 Whole Genome Methods and Pharmaceutical Applications of Genetic Engineering
    5. 12.4 Gene Therapy
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  14. 13 Control of Microbial Growth
    1. Introduction
    2. 13.1 Controlling Microbial Growth
    3. 13.2 Using Physical Methods to Control Microorganisms
    4. 13.3 Using Chemicals to Control Microorganisms
    5. 13.4 Testing the Effectiveness of Antiseptics and Disinfectants
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  15. 14 Antimicrobial Drugs
    1. Introduction
    2. 14.1 History of Chemotherapy and Antimicrobial Discovery
    3. 14.2 Fundamentals of Antimicrobial Chemotherapy
    4. 14.3 Mechanisms of Antibacterial Drugs
    5. 14.4 Mechanisms of Other Antimicrobial Drugs
    6. 14.5 Drug Resistance
    7. 14.6 Testing the Effectiveness of Antimicrobials
    8. 14.7 Current Strategies for Antimicrobial Discovery
    9. Summary
    10. Review Questions
      1. Multiple Choice
      2. True/False
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  16. 15 Microbial Mechanisms of Pathogenicity
    1. Introduction
    2. 15.1 Characteristics of Infectious Disease
    3. 15.2 How Pathogens Cause Disease
    4. 15.3 Virulence Factors of Bacterial and Viral Pathogens
    5. 15.4 Virulence Factors of Eukaryotic Pathogens
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  17. 16 Disease and Epidemiology
    1. Introduction
    2. 16.1 The Language of Epidemiologists
    3. 16.2 Tracking Infectious Diseases
    4. 16.3 Modes of Disease Transmission
    5. 16.4 Global Public Health
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  18. 17 Innate Nonspecific Host Defenses
    1. Introduction
    2. 17.1 Physical Defenses
    3. 17.2 Chemical Defenses
    4. 17.3 Cellular Defenses
    5. 17.4 Pathogen Recognition and Phagocytosis
    6. 17.5 Inflammation and Fever
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  19. 18 Adaptive Specific Host Defenses
    1. Introduction
    2. 18.1 Overview of Specific Adaptive Immunity
    3. 18.2 Major Histocompatibility Complexes and Antigen-Presenting Cells
    4. 18.3 T Lymphocytes and Cellular Immunity
    5. 18.4 B Lymphocytes and Humoral Immunity
    6. 18.5 Vaccines
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  20. 19 Diseases of the Immune System
    1. Introduction
    2. 19.1 Hypersensitivities
    3. 19.2 Autoimmune Disorders
    4. 19.3 Organ Transplantation and Rejection
    5. 19.4 Immunodeficiency
    6. 19.5 Cancer Immunobiology and Immunotherapy
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  21. 20 Laboratory Analysis of the Immune Response
    1. Introduction
    2. 20.1 Polyclonal and Monoclonal Antibody Production
    3. 20.2 Detecting Antigen-Antibody Complexes
    4. 20.3 Agglutination Assays
    5. 20.4 EIAs and ELISAs
    6. 20.5 Fluorescent Antibody Techniques
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  22. 21 Skin and Eye Infections
    1. Introduction
    2. 21.1 Anatomy and Normal Microbiota of the Skin and Eyes
    3. 21.2 Bacterial Infections of the Skin and Eyes
    4. 21.3 Viral Infections of the Skin and Eyes
    5. 21.4 Mycoses of the Skin
    6. 21.5 Protozoan and Helminthic Infections of the Skin and Eyes
    7. Summary
    8. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  23. 22 Respiratory System Infections
    1. Introduction
    2. 22.1 Anatomy and Normal Microbiota of the Respiratory Tract
    3. 22.2 Bacterial Infections of the Respiratory Tract
    4. 22.3 Viral Infections of the Respiratory Tract
    5. 22.4 Respiratory Mycoses
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  24. 23 Urogenital System Infections
    1. Introduction
    2. 23.1 Anatomy and Normal Microbiota of the Urogenital Tract
    3. 23.2 Bacterial Infections of the Urinary System
    4. 23.3 Bacterial Infections of the Reproductive System
    5. 23.4 Viral Infections of the Reproductive System
    6. 23.5 Fungal Infections of the Reproductive System
    7. 23.6 Protozoan Infections of the Urogenital System
    8. Summary
    9. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  25. 24 Digestive System Infections
    1. Introduction
    2. 24.1 Anatomy and Normal Microbiota of the Digestive System
    3. 24.2 Microbial Diseases of the Mouth and Oral Cavity
    4. 24.3 Bacterial Infections of the Gastrointestinal Tract
    5. 24.4 Viral Infections of the Gastrointestinal Tract
    6. 24.5 Protozoan Infections of the Gastrointestinal Tract
    7. 24.6 Helminthic Infections of the Gastrointestinal Tract
    8. Summary
    9. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  26. 25 Circulatory and Lymphatic System Infections
    1. Introduction
    2. 25.1 Anatomy of the Circulatory and Lymphatic Systems
    3. 25.2 Bacterial Infections of the Circulatory and Lymphatic Systems
    4. 25.3 Viral Infections of the Circulatory and Lymphatic Systems
    5. 25.4 Parasitic Infections of the Circulatory and Lymphatic Systems
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Fill in the Blank
      3. Short Answer
      4. Critical Thinking
  27. 26 Nervous System Infections
    1. Introduction
    2. 26.1 Anatomy of the Nervous System
    3. 26.2 Bacterial Diseases of the Nervous System
    4. 26.3 Acellular Diseases of the Nervous System
    5. 26.4 Fungal and Parasitic Diseases of the Nervous System
    6. Summary
    7. Review Questions
      1. Multiple Choice
      2. Matching
      3. Fill in the Blank
      4. Short Answer
      5. Critical Thinking
  28. A | Fundamentals of Physics and Chemistry Important to Microbiology
  29. B | Mathematical Basics
  30. C | Metabolic Pathways
  31. D | Taxonomy of Clinically Relevant Microorganisms
  32. E | Glossary
  33. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
    13. Chapter 13
    14. Chapter 14
    15. Chapter 15
    16. Chapter 16
    17. Chapter 17
    18. Chapter 18
    19. Chapter 19
    20. Chapter 20
    21. Chapter 21
    22. Chapter 22
    23. Chapter 23
    24. Chapter 24
    25. Chapter 25
    26. Chapter 26
  34. Index

Learning Objectives

By the end of this section, you will be able to:

  • Describe virulence factors unique to fungi and parasites
  • Compare virulence factors of fungi and bacteria
  • Explain the difference between protozoan parasites and helminths
  • Describe how helminths evade the host immune system

Although fungi and parasites are important pathogens causing infectious diseases, their pathogenic mechanisms and virulence factors are not as well characterized as those of bacteria. Despite the relative lack of detailed mechanisms, the stages of pathogenesis and general mechanisms of virulence involved in disease production by these pathogens are similar to those of bacteria.

Fungal Virulence

Pathogenic fungi can produce virulence factors that are similar to the bacterial virulence factors that have been discussed earlier in this chapter. In this section, we will look at the virulence factors associated with species of Candida, Cryptococcus, Claviceps, and Aspergillus.

Candida albicans is an opportunistic fungal pathogen and causative agent of oral thrush, vaginal yeast infections, and cutaneous candidiasis. Candida produces adhesins (surface glycoproteins) that bind to the phospholipids of epithelial and endothelial cells. To assist in spread and tissue invasion, Candida produces proteases and phospholipases (i.e., exoenzymes). One of these proteases degrades keratin, a structural protein found on epithelial cells, enhancing the ability of the fungus to invade host tissue. In animal studies, it has been shown that the addition of a protease inhibitor led to attenuation of Candida infection.9 Similarly, the phospholipases can affect the integrity of host cell membranes to facilitate invasion.

The main virulence factor for Cryptococcus, a fungus that causes pneumonia and meningitis, is capsule production. The polysaccharide glucuronoxylomannan is the principal constituent of the Cryptococcus capsule. Similar to encapsulated bacterial cells, encapsulated Cryptococcus cells are more resistant to phagocytosis than nonencapsulated Cryptococcus, which are effectively phagocytosed and, therefore, less virulent.

Like some bacteria, many fungi produce exotoxins. Fungal toxins are called mycotoxins. Claviceps purpurea, a fungus that grows on rye and related grains, produces a mycotoxin called ergot toxin, an alkaloid responsible for the disease known as ergotism. There are two forms of ergotism: gangrenous and convulsive. In gangrenous ergotism, the ergot toxin causes vasoconstriction, resulting in improper blood flow to the extremities, eventually leading to gangrene. A famous outbreak of gangrenous ergotism occurred in Eastern Europe during the 5th century AD due to the consumption of rye contaminated with C. purpurea. In convulsive ergotism, the toxin targets the central nervous system, causing mania and hallucinations.

The mycotoxin aflatoxin is a virulence factor produced by the fungus Aspergillus, an opportunistic pathogen that can enter the body via contaminated food or by inhalation. Inhalation of the fungus can lead to the chronic pulmonary disease aspergillosis, characterized by fever, bloody sputum, and/or asthma. Aflatoxin acts in the host as both a mutagen (a substance that causes mutations in DNA) and a carcinogen (a substance involved in causing cancer), and has been associated with the development of liver cancer. Aflatoxin has also been shown to cross the blood-placental barrier.10 A second mycotoxin produced by Aspergillus is gliotoxin. This toxin promotes virulence by inducing host cells to self-destruct and by evading the host’s immune response by inhibiting the function of phagocytic cells as well as the pro-inflammatory response. Like Candida, Aspergillus also produces several proteases. One is elastase, which breaks down the protein elastin found in the connective tissue of the lung, leading to the development of lung disease. Another is catalase, an enzyme that protects the fungus from hydrogen peroxide produced by the immune system to destroy pathogens.

Check Your Understanding

  • List virulence factors common to bacteria and fungi.
  • What functions do mycotoxins perform to help fungi survive in the host?

Protozoan Virulence

Protozoan pathogens are unicellular eukaryotic parasites that have virulence factors and pathogenic mechanisms analogous to prokaryotic and viral pathogens, including adhesins, toxins, antigenic variation, and the ability to survive inside phagocytic vesicles.

Protozoans often have unique features for attaching to host cells. The protozoan Giardia lamblia, which causes the intestinal disease giardiasis, uses a large adhesive disc composed of microtubules to attach to the intestinal mucosa. During adhesion, the flagella of G. lamblia move in a manner that draws fluid out from under the disc, resulting in an area of lower pressure that facilitates adhesion to epithelial cells. Giardia does not invade the intestinal cells but rather causes inflammation (possibly through the release of cytopathic substances that cause damage to the cells) and shortens the intestinal villi, inhibiting absorption of nutrients.

Some protozoans are capable of antigenic variation. The obligate intracellular pathogen Plasmodium falciparum (one of the causative agents of malaria) resides inside red blood cells, where it produces an adhesin membrane protein known as PfEMP1. This protein is expressed on the surface of the infected erythrocytes, causing blood cells to stick to each other and to the walls of blood vessels. This process impedes blood flow, sometimes leading to organ failure, anemia, jaundice (yellowing of skin and sclera of the eyes due to buildup of bilirubin from lysed red blood cells), and, subsequently, death. Although PfEMP1 can be recognized by the host’s immune system, antigenic variations in the structure of the protein over time prevent it from being easily recognized and eliminated. This allows malaria to persist as a chronic infection in many individuals.

The virulence factors of Trypanosoma brucei, the causative agent of African sleeping sickness, include the abilities to form capsules and undergo antigenic variation. T. brucei evades phagocytosis by producing a dense glycoprotein coat that resembles a bacterial capsule. Over time, host antibodies are produced that recognize this coat, but T. brucei is able to alter the structure of the glycoprotein to evade recognition.

Check Your Understanding

  • Explain how antigenic variation by protozoan pathogens helps them survive in the host.

Helminth Virulence

Helminths, or parasitic worms, are multicellular eukaryotic parasites that depend heavily on virulence factors that allow them to gain entry to host tissues. For example, the aquatic larval form of Schistosoma mansoni, which causes schistosomiasis, penetrates intact skin with the aid of proteases that degrade skin proteins, including elastin.

To survive within the host long enough to perpetuate their often-complex life cycles, helminths need to evade the immune system. Some helminths are so large that the immune system is ineffective against them. Others, such as adult roundworms (which cause trichinosis, ascariasis, and other diseases), are protected by a tough outer cuticle.

Over the course of their life cycles, the surface characteristics of the parasites vary, which may help prevent an effective immune response. Some helminths express polysaccharides called glycans on their external surface; because these glycans resemble molecules produced by host cells, the immune system fails to recognize and attack the helminth as a foreign body. This “glycan gimmickry,” as it has been called, serves as a protective cloak that allows the helminth to escape detection by the immune system.11

In addition to evading host defenses, helminths can actively suppress the immune system. S. mansoni, for example, degrades host antibodies with proteases. Helminths produce many other substances that suppress elements of both innate nonspecific and adaptive specific host defenses. They also release large amounts of material into the host that may locally overwhelm the immune system or cause it to respond inappropriately.

Check Your Understanding

  • Describe how helminths avoid being destroyed by the host immune system.

Footnotes

  • 9K. Fallon et al. “Role of Aspartic Proteases in Disseminated Candida albicans Infection in Mice.” Infection and Immunity 65 no. 2 (1997):551–556.
  • 10C.P. Wild et al. “In-utero exposure to aflatoxin in west Africa.” Lancet 337 no. 8757 (1991):1602.
  • 11I. van Die, R.D. Cummings. “Glycan Gimmickry by Parasitic Helminths: A Strategy for Modulating the Host Immune Response?” Glycobiology 20 no. 1 (2010):2–12.
Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/microbiology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/microbiology/pages/1-introduction
Citation information

© Sep 25, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.