Skip to Content
OpenStax Logo
Introductory Statistics

8.6 Confidence Interval (Women's Heights)

Introductory Statistics8.6 Confidence Interval (Women's Heights)
Buy book
  1. Preface
  2. 1 Sampling and Data
    1. Introduction
    2. 1.1 Definitions of Statistics, Probability, and Key Terms
    3. 1.2 Data, Sampling, and Variation in Data and Sampling
    4. 1.3 Frequency, Frequency Tables, and Levels of Measurement
    5. 1.4 Experimental Design and Ethics
    6. 1.5 Data Collection Experiment
    7. 1.6 Sampling Experiment
    8. Key Terms
    9. Chapter Review
    10. Practice
    11. Homework
    12. Bringing It Together: Homework
    13. References
    14. Solutions
  3. 2 Descriptive Statistics
    1. Introduction
    2. 2.1 Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs
    3. 2.2 Histograms, Frequency Polygons, and Time Series Graphs
    4. 2.3 Measures of the Location of the Data
    5. 2.4 Box Plots
    6. 2.5 Measures of the Center of the Data
    7. 2.6 Skewness and the Mean, Median, and Mode
    8. 2.7 Measures of the Spread of the Data
    9. 2.8 Descriptive Statistics
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. Bringing It Together: Homework
    16. References
    17. Solutions
  4. 3 Probability Topics
    1. Introduction
    2. 3.1 Terminology
    3. 3.2 Independent and Mutually Exclusive Events
    4. 3.3 Two Basic Rules of Probability
    5. 3.4 Contingency Tables
    6. 3.5 Tree and Venn Diagrams
    7. 3.6 Probability Topics
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Bringing It Together: Practice
    13. Homework
    14. Bringing It Together: Homework
    15. References
    16. Solutions
  5. 4 Discrete Random Variables
    1. Introduction
    2. 4.1 Probability Distribution Function (PDF) for a Discrete Random Variable
    3. 4.2 Mean or Expected Value and Standard Deviation
    4. 4.3 Binomial Distribution
    5. 4.4 Geometric Distribution
    6. 4.5 Hypergeometric Distribution
    7. 4.6 Poisson Distribution
    8. 4.7 Discrete Distribution (Playing Card Experiment)
    9. 4.8 Discrete Distribution (Lucky Dice Experiment)
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. References
    16. Solutions
  6. 5 Continuous Random Variables
    1. Introduction
    2. 5.1 Continuous Probability Functions
    3. 5.2 The Uniform Distribution
    4. 5.3 The Exponential Distribution
    5. 5.4 Continuous Distribution
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  7. 6 The Normal Distribution
    1. Introduction
    2. 6.1 The Standard Normal Distribution
    3. 6.2 Using the Normal Distribution
    4. 6.3 Normal Distribution (Lap Times)
    5. 6.4 Normal Distribution (Pinkie Length)
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  8. 7 The Central Limit Theorem
    1. Introduction
    2. 7.1 The Central Limit Theorem for Sample Means (Averages)
    3. 7.2 The Central Limit Theorem for Sums
    4. 7.3 Using the Central Limit Theorem
    5. 7.4 Central Limit Theorem (Pocket Change)
    6. 7.5 Central Limit Theorem (Cookie Recipes)
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. References
    13. Solutions
  9. 8 Confidence Intervals
    1. Introduction
    2. 8.1 A Single Population Mean using the Normal Distribution
    3. 8.2 A Single Population Mean using the Student t Distribution
    4. 8.3 A Population Proportion
    5. 8.4 Confidence Interval (Home Costs)
    6. 8.5 Confidence Interval (Place of Birth)
    7. 8.6 Confidence Interval (Women's Heights)
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. References
    14. Solutions
  10. 9 Hypothesis Testing with One Sample
    1. Introduction
    2. 9.1 Null and Alternative Hypotheses
    3. 9.2 Outcomes and the Type I and Type II Errors
    4. 9.3 Distribution Needed for Hypothesis Testing
    5. 9.4 Rare Events, the Sample, Decision and Conclusion
    6. 9.5 Additional Information and Full Hypothesis Test Examples
    7. 9.6 Hypothesis Testing of a Single Mean and Single Proportion
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. References
    14. Solutions
  11. 10 Hypothesis Testing with Two Samples
    1. Introduction
    2. 10.1 Two Population Means with Unknown Standard Deviations
    3. 10.2 Two Population Means with Known Standard Deviations
    4. 10.3 Comparing Two Independent Population Proportions
    5. 10.4 Matched or Paired Samples
    6. 10.5 Hypothesis Testing for Two Means and Two Proportions
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. Bringing It Together: Homework
    13. References
    14. Solutions
  12. 11 The Chi-Square Distribution
    1. Introduction
    2. 11.1 Facts About the Chi-Square Distribution
    3. 11.2 Goodness-of-Fit Test
    4. 11.3 Test of Independence
    5. 11.4 Test for Homogeneity
    6. 11.5 Comparison of the Chi-Square Tests
    7. 11.6 Test of a Single Variance
    8. 11.7 Lab 1: Chi-Square Goodness-of-Fit
    9. 11.8 Lab 2: Chi-Square Test of Independence
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. Bringing It Together: Homework
    16. References
    17. Solutions
  13. 12 Linear Regression and Correlation
    1. Introduction
    2. 12.1 Linear Equations
    3. 12.2 Scatter Plots
    4. 12.3 The Regression Equation
    5. 12.4 Testing the Significance of the Correlation Coefficient
    6. 12.5 Prediction
    7. 12.6 Outliers
    8. 12.7 Regression (Distance from School)
    9. 12.8 Regression (Textbook Cost)
    10. 12.9 Regression (Fuel Efficiency)
    11. Key Terms
    12. Chapter Review
    13. Formula Review
    14. Practice
    15. Homework
    16. Bringing It Together: Homework
    17. References
    18. Solutions
  14. 13 F Distribution and One-Way ANOVA
    1. Introduction
    2. 13.1 One-Way ANOVA
    3. 13.2 The F Distribution and the F-Ratio
    4. 13.3 Facts About the F Distribution
    5. 13.4 Test of Two Variances
    6. 13.5 Lab: One-Way ANOVA
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. References
    13. Solutions
  15. A | Review Exercises (Ch 3-13)
  16. B | Practice Tests (1-4) and Final Exams
  17. C | Data Sets
  18. D | Group and Partner Projects
  19. E | Solution Sheets
  20. F | Mathematical Phrases, Symbols, and Formulas
  21. G | Notes for the TI-83, 83+, 84, 84+ Calculators
  22. H | Tables
  23. Index
Stats Lab 8.3

Confidence Interval (Women's Heights)

Class Time:

Names:

Student Learning Outcomes
  • The student will calculate a 90% confidence interval using the given data.
  • The student will determine the relationship between the confidence level and the percentage of constructed intervals that contain the population mean.

Given:

59.4 71.6 69.3 65.0 62.9 66.5 61.7 55.2
67.5 67.2 63.8 62.9 63.0 63.9 68.7 65.5
61.9 69.6 58.7 63.4 61.8 60.6 69.8 60.0
64.9 66.1 66.8 60.6 65.6 63.8 61.3 59.2
64.1 59.3 64.9 62.4 63.5 60.9 63.3 66.3
61.5 64.3 62.9 60.6 63.8 58.8 64.9 65.7
62.5 70.9 62.9 63.1 62.2 58.7 64.7 66.0
60.5 64.7 65.4 60.2 65.0 64.1 61.1 65.3
64.6 59.2 61.4 62.0 63.5 61.4 65.5 62.3
65.5 64.7 58.8 66.1 64.9 66.9 57.9 69.8
58.5 63.4 69.2 65.9 62.2 60.0 58.1 62.5
62.4 59.1 66.4 61.2 60.4 58.7 66.7 67.5
63.2 56.6 67.7 62.5
Table 8.8 Heights of 100 Women (in Inches)
  1. Table 8.8 lists the heights of 100 women. Use a random number generator to select ten data values randomly.
  2. Calculate the sample mean and the sample standard deviation. Assume that the population standard deviation is known to be 3.3 inches. With these values, construct a 90% confidence interval for your sample of ten values. Write the confidence interval you obtained in the first space of Table 8.9.
  3. Now write your confidence interval on the board. As others in the class write their confidence intervals on the board, copy them into Table 8.9.
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    __________ __________ __________ __________ __________
    Table 8.9 90% Confidence Intervals
Discussion Questions
  1. The actual population mean for the 100 heights given Table 8.8 is μ = 63.4. Using the class listing of confidence intervals, count how many of them contain the population mean μ; i.e., for how many intervals does the value of μ lie between the endpoints of the confidence interval?
  2. Divide this number by the total number of confidence intervals generated by the class to determine the percent of confidence intervals that contains the mean μ. Write this percent here: _____________.
  3. Is the percent of confidence intervals that contain the population mean μ close to 90%?
  4. Suppose we had generated 100 confidence intervals. What do you think would happen to the percent of confidence intervals that contained the population mean?
  5. When we construct a 90% confidence interval, we say that we are 90% confident that the true population mean lies within the confidence interval. Using complete sentences, explain what we mean by this phrase.
  6. Some students think that a 90% confidence interval contains 90% of the data. Use the list of data given (the heights of women) and count how many of the data values lie within the confidence interval that you generated based on that data. How many of the 100 data values lie within your confidence interval? What percent is this? Is this percent close to 90%?
  7. Explain why it does not make sense to count data values that lie in a confidence interval. Think about the random variable that is being used in the problem.
  8. Suppose you obtained the heights of ten women and calculated a confidence interval from this information. Without knowing the population mean μ, would you have any way of knowing for certain if your interval actually contained the value of μ? Explain.
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics/pages/1-introduction
Citation information

© Sep 19, 2013 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.