Skip to Content
OpenStax Logo
Buy book
  1. Preface
  2. 1 Sampling and Data
    1. Introduction
    2. 1.1 Definitions of Statistics, Probability, and Key Terms
    3. 1.2 Data, Sampling, and Variation in Data and Sampling
    4. 1.3 Frequency, Frequency Tables, and Levels of Measurement
    5. 1.4 Experimental Design and Ethics
    6. 1.5 Data Collection Experiment
    7. 1.6 Sampling Experiment
    8. Key Terms
    9. Chapter Review
    10. Practice
    11. Homework
    12. Bringing It Together: Homework
    13. References
    14. Solutions
  3. 2 Descriptive Statistics
    1. Introduction
    2. 2.1 Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs
    3. 2.2 Histograms, Frequency Polygons, and Time Series Graphs
    4. 2.3 Measures of the Location of the Data
    5. 2.4 Box Plots
    6. 2.5 Measures of the Center of the Data
    7. 2.6 Skewness and the Mean, Median, and Mode
    8. 2.7 Measures of the Spread of the Data
    9. 2.8 Descriptive Statistics
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. Bringing It Together: Homework
    16. References
    17. Solutions
  4. 3 Probability Topics
    1. Introduction
    2. 3.1 Terminology
    3. 3.2 Independent and Mutually Exclusive Events
    4. 3.3 Two Basic Rules of Probability
    5. 3.4 Contingency Tables
    6. 3.5 Tree and Venn Diagrams
    7. 3.6 Probability Topics
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Bringing It Together: Practice
    13. Homework
    14. Bringing It Together: Homework
    15. References
    16. Solutions
  5. 4 Discrete Random Variables
    1. Introduction
    2. 4.1 Probability Distribution Function (PDF) for a Discrete Random Variable
    3. 4.2 Mean or Expected Value and Standard Deviation
    4. 4.3 Binomial Distribution
    5. 4.4 Geometric Distribution
    6. 4.5 Hypergeometric Distribution
    7. 4.6 Poisson Distribution
    8. 4.7 Discrete Distribution (Playing Card Experiment)
    9. 4.8 Discrete Distribution (Lucky Dice Experiment)
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. References
    16. Solutions
  6. 5 Continuous Random Variables
    1. Introduction
    2. 5.1 Continuous Probability Functions
    3. 5.2 The Uniform Distribution
    4. 5.3 The Exponential Distribution
    5. 5.4 Continuous Distribution
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  7. 6 The Normal Distribution
    1. Introduction
    2. 6.1 The Standard Normal Distribution
    3. 6.2 Using the Normal Distribution
    4. 6.3 Normal Distribution (Lap Times)
    5. 6.4 Normal Distribution (Pinkie Length)
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  8. 7 The Central Limit Theorem
    1. Introduction
    2. 7.1 The Central Limit Theorem for Sample Means (Averages)
    3. 7.2 The Central Limit Theorem for Sums
    4. 7.3 Using the Central Limit Theorem
    5. 7.4 Central Limit Theorem (Pocket Change)
    6. 7.5 Central Limit Theorem (Cookie Recipes)
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. References
    13. Solutions
  9. 8 Confidence Intervals
    1. Introduction
    2. 8.1 A Single Population Mean using the Normal Distribution
    3. 8.2 A Single Population Mean using the Student t Distribution
    4. 8.3 A Population Proportion
    5. 8.4 Confidence Interval (Home Costs)
    6. 8.5 Confidence Interval (Place of Birth)
    7. 8.6 Confidence Interval (Women's Heights)
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. References
    14. Solutions
  10. 9 Hypothesis Testing with One Sample
    1. Introduction
    2. 9.1 Null and Alternative Hypotheses
    3. 9.2 Outcomes and the Type I and Type II Errors
    4. 9.3 Distribution Needed for Hypothesis Testing
    5. 9.4 Rare Events, the Sample, Decision and Conclusion
    6. 9.5 Additional Information and Full Hypothesis Test Examples
    7. 9.6 Hypothesis Testing of a Single Mean and Single Proportion
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. References
    14. Solutions
  11. 10 Hypothesis Testing with Two Samples
    1. Introduction
    2. 10.1 Two Population Means with Unknown Standard Deviations
    3. 10.2 Two Population Means with Known Standard Deviations
    4. 10.3 Comparing Two Independent Population Proportions
    5. 10.4 Matched or Paired Samples
    6. 10.5 Hypothesis Testing for Two Means and Two Proportions
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. Bringing It Together: Homework
    13. References
    14. Solutions
  12. 11 The Chi-Square Distribution
    1. Introduction
    2. 11.1 Facts About the Chi-Square Distribution
    3. 11.2 Goodness-of-Fit Test
    4. 11.3 Test of Independence
    5. 11.4 Test for Homogeneity
    6. 11.5 Comparison of the Chi-Square Tests
    7. 11.6 Test of a Single Variance
    8. 11.7 Lab 1: Chi-Square Goodness-of-Fit
    9. 11.8 Lab 2: Chi-Square Test of Independence
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. Bringing It Together: Homework
    16. References
    17. Solutions
  13. 12 Linear Regression and Correlation
    1. Introduction
    2. 12.1 Linear Equations
    3. 12.2 Scatter Plots
    4. 12.3 The Regression Equation
    5. 12.4 Testing the Significance of the Correlation Coefficient
    6. 12.5 Prediction
    7. 12.6 Outliers
    8. 12.7 Regression (Distance from School)
    9. 12.8 Regression (Textbook Cost)
    10. 12.9 Regression (Fuel Efficiency)
    11. Key Terms
    12. Chapter Review
    13. Formula Review
    14. Practice
    15. Homework
    16. Bringing It Together: Homework
    17. References
    18. Solutions
  14. 13 F Distribution and One-Way ANOVA
    1. Introduction
    2. 13.1 One-Way ANOVA
    3. 13.2 The F Distribution and the F-Ratio
    4. 13.3 Facts About the F Distribution
    5. 13.4 Test of Two Variances
    6. 13.5 Lab: One-Way ANOVA
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. References
    13. Solutions
  15. A | Review Exercises (Ch 3-13)
  16. B | Practice Tests (1-4) and Final Exams
  17. C | Data Sets
  18. D | Group and Partner Projects
  19. E | Solution Sheets
  20. F | Mathematical Phrases, Symbols, and Formulas
  21. G | Notes for the TI-83, 83+, 84, 84+ Calculators
  22. H | Tables
  23. Index

5.1 Continuous Probability Functions

1.

Which type of distribution does the graph illustrate?

The horizontal axis ranges from 0 to 10. The distribution is modeled by a rectangle extending from x = 3 to x =8.
Figure 5.37
2.

Which type of distribution does the graph illustrate?

This graph slopes downward. It begins at a point on the y-axis and approaches the x-axis at the right edge of the graph.
Figure 5.38
3.

Which type of distribution does the graph illustrate?

This graph shows a bell-shaped graph. The symmetric graph reaches maximum height at x = 0 and slopes downward gradually to the x-axis on each side of the peak.
Figure 5.39
4.

What does the shaded area represent? P(___< x < ___)

This graph shows a uniform distribution. The horizontal axis ranges from 0 to 10. The distribution is modeled by a rectangle extending from x = 1 to x = 8. A region from x = 2 to x = 5 is shaded inside the rectangle.
Figure 5.40
5.

What does the shaded area represent? P(___< x < ___)

This graph shows an exponential distribution. The graph slopes downward. It begins at a point on the y-axis and approaches the x-axis at the right edge of the graph. The region under the graph from x = 6 to x = 7 is shaded.
Figure 5.41
6.

For a continuous probablity distribution, 0 ≤ x ≤ 15. What is P(x > 15)?

7.

What is the area under f(x) if the function is a continuous probability density function?

8.

For a continuous probability distribution, 0 ≤ x ≤ 10. What is P(x = 7)?

9.

A continuous probability function is restricted to the portion between x = 0 and 7. What is P(x = 10)?

10.

f(x) for a continuous probability function is 1 5 1 5 , and the function is restricted to 0 ≤ x ≤ 5. What is P(x < 0)?

11.

f(x), a continuous probability function, is equal to 1 12 1 12 , and the function is restricted to 0 ≤ x ≤ 12. What is P (0 < x < 12)?

12.

Find the probability that x falls in the shaded area.

Figure 5.42
13.

Find the probability that x falls in the shaded area.

Figure 5.43
14.

Find the probability that x falls in the shaded area.

Figure 5.44
15.

f(x), a continuous probability function, is equal to 1 3 1 3 and the function is restricted to 1 ≤ x ≤ 4. Describe P( x> 3 2 ). P( x> 3 2 ).

5.2 The Uniform Distribution

Use the following information to answer the next ten questions. The data that follow are the square footage (in 1,000 feet squared) of 28 homes.

1.5 2.4 3.6 2.6 1.6 2.4 2.0
3.5 2.5 1.8 2.4 2.5 3.5 4.0
2.6 1.6 2.2 1.8 3.8 2.5 1.5
2.8 1.8 4.5 1.9 1.9 3.1 1.6
Table 5.4

The sample mean = 2.50 and the sample standard deviation = 0.8302.

The distribution can be written as X ~ U(1.5, 4.5).

16.

What type of distribution is this?

17.

In this distribution, outcomes are equally likely. What does this mean?

18.

What is the height of f(x) for the continuous probability distribution?

19.

What are the constraints for the values of x?

20.

Graph P(2 < x < 3).

21.

What is P(2 < x < 3)?

22.

What is P(x < 3.5| x < 4)?

23.

What is P(x = 1.5)?

24.

What is the 90th percentile of square footage for homes?

25.

Find the probability that a randomly selected home has more than 3,000 square feet given that you already know the house has more than 2,000 square feet.


Use the following information to answer the next eight exercises. A distribution is given as X ~ U(0, 12).

26.

What is a? What does it represent?

27.

What is b? What does it represent?

28.

What is the probability density function?

29.

What is the theoretical mean?

30.

What is the theoretical standard deviation?

31.

Draw the graph of the distribution for P(x > 9).

32.

Find P(x > 9).

33.

Find the 40th percentile.


Use the following information to answer the next eleven exercises. The age of cars in the staff parking lot of a suburban college is uniformly distributed from six months (0.5 years) to 9.5 years.

34.

What is being measured here?

35.

In words, define the random variable X.

36.

Are the data discrete or continuous?

37.

The interval of values for x is ______.

38.

The distribution for X is ______.

39.

Write the probability density function.

40.

Graph the probability distribution.

  1. Sketch the graph of the probability distribution.
    This is a blank graph template. The vertical and horizontal axes are unlabeled.
    Figure 5.45
  2. Identify the following values:
    1. Lowest value for x ¯ x ¯ : _______
    2. Highest value for x ¯ x ¯ : _______
    3. Height of the rectangle: _______
    4. Label for x-axis (words): _______
    5. Label for y-axis (words): _______
41.

Find the average age of the cars in the lot.

42.

Find the probability that a randomly chosen car in the lot was less than four years old.

  1. Sketch the graph, and shade the area of interest.
    Blank graph with vertical and horizontal axes.
    Figure 5.46
  2. Find the probability. P(x < 4) = _______
43.

Considering only the cars less than 7.5 years old, find the probability that a randomly chosen car in the lot was less than four years old.

  1. Sketch the graph, shade the area of interest.
    This is a blank graph template. The vertical and horizontal axes are unlabeled.
    Figure 5.47
  2. Find the probability. P(x < 4|x < 7.5) = _______
44.

What has changed in the previous two problems that made the solutions different?

45.

Find the third quartile of ages of cars in the lot. This means you will have to find the value such that 3 4 3 4 , or 75%, of the cars are at most (less than or equal to) that age.

  1. Sketch the graph, and shade the area of interest.
    Blank graph with vertical and horizontal axes.
    Figure 5.48
  2. Find the value k such that P(x < k) = 0.75.
  3. The third quartile is _______

5.3 The Exponential Distribution

Use the following information to answer the next ten exercises. A customer service representative must spend different amounts of time with each customer to resolve various concerns. The amount of time spent with each customer can be modeled by the following distribution: X ~ Exp(0.2)

46.

What type of distribution is this?

47.

Are outcomes equally likely in this distribution? Why or why not?

48.

What is m? What does it represent?

49.

What is the mean?

50.

What is the standard deviation?

51.

State the probability density function.

52.

Graph the distribution.

53.

Find P(2 < x < 10).

54.

Find P(x > 6).

55.

Find the 70th percentile.


Use the following information to answer the next seven exercises. A distribution is given as X ~ Exp(0.75).

56.

What is m?

57.

What is the probability density function?

58.

What is the cumulative distribution function?

59.

Draw the distribution.

60.

Find P(x < 4).

61.

Find the 30th percentile.

62.

Find the median.

63.

Which is larger, the mean or the median?

Use the following information to answer the next 16 exercises. Carbon-14 is a radioactive element with a half-life of about 5,730 years. Carbon-14 is said to decay exponentially. The decay rate is 0.000121. We start with one gram of carbon-14. We are interested in the time (years) it takes to decay carbon-14.

64.

What is being measured here?

65.

Are the data discrete or continuous?

66.

In words, define the random variable X.

67.

What is the decay rate (m)?

68.

The distribution for X is ______.

69.

Find the amount (percent of one gram) of carbon-14 lasting less than 5,730 years. This means, find P(x < 5,730).

  1. Sketch the graph, and shade the area of interest.
    This is a blank graph template. The vertical and horizontal axes are unlabeled.
    Figure 5.49
  2. Find the probability. P(x < 5,730) = __________
70.

Find the percentage of carbon-14 lasting longer than 10,000 years.

  1. Sketch the graph, and shade the area of interest.
    Blank graph with horizontal and vertical axes.
    Figure 5.50
  2. Find the probability. P(x > 10,000) = ________
71.

Thirty percent (30%) of carbon-14 will decay within how many years?

  1. Sketch the graph, and shade the area of interest.
    This is a blank graph template. The vertical and horizontal axes are unlabeled.
    Figure 5.51
  2. Find the value k such that P(x < k) = 0.30.
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics/pages/1-introduction
Citation information

© Sep 19, 2013 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.