Skip to Content
OpenStax Logo
Introductory Statistics

2.6 Skewness and the Mean, Median, and Mode

Introductory Statistics2.6 Skewness and the Mean, Median, and Mode
Buy book
  1. Preface
  2. 1 Sampling and Data
    1. Introduction
    2. 1.1 Definitions of Statistics, Probability, and Key Terms
    3. 1.2 Data, Sampling, and Variation in Data and Sampling
    4. 1.3 Frequency, Frequency Tables, and Levels of Measurement
    5. 1.4 Experimental Design and Ethics
    6. 1.5 Data Collection Experiment
    7. 1.6 Sampling Experiment
    8. Key Terms
    9. Chapter Review
    10. Practice
    11. Homework
    12. Bringing It Together: Homework
    13. References
    14. Solutions
  3. 2 Descriptive Statistics
    1. Introduction
    2. 2.1 Stem-and-Leaf Graphs (Stemplots), Line Graphs, and Bar Graphs
    3. 2.2 Histograms, Frequency Polygons, and Time Series Graphs
    4. 2.3 Measures of the Location of the Data
    5. 2.4 Box Plots
    6. 2.5 Measures of the Center of the Data
    7. 2.6 Skewness and the Mean, Median, and Mode
    8. 2.7 Measures of the Spread of the Data
    9. 2.8 Descriptive Statistics
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. Bringing It Together: Homework
    16. References
    17. Solutions
  4. 3 Probability Topics
    1. Introduction
    2. 3.1 Terminology
    3. 3.2 Independent and Mutually Exclusive Events
    4. 3.3 Two Basic Rules of Probability
    5. 3.4 Contingency Tables
    6. 3.5 Tree and Venn Diagrams
    7. 3.6 Probability Topics
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Bringing It Together: Practice
    13. Homework
    14. Bringing It Together: Homework
    15. References
    16. Solutions
  5. 4 Discrete Random Variables
    1. Introduction
    2. 4.1 Probability Distribution Function (PDF) for a Discrete Random Variable
    3. 4.2 Mean or Expected Value and Standard Deviation
    4. 4.3 Binomial Distribution
    5. 4.4 Geometric Distribution
    6. 4.5 Hypergeometric Distribution
    7. 4.6 Poisson Distribution
    8. 4.7 Discrete Distribution (Playing Card Experiment)
    9. 4.8 Discrete Distribution (Lucky Dice Experiment)
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. References
    16. Solutions
  6. 5 Continuous Random Variables
    1. Introduction
    2. 5.1 Continuous Probability Functions
    3. 5.2 The Uniform Distribution
    4. 5.3 The Exponential Distribution
    5. 5.4 Continuous Distribution
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  7. 6 The Normal Distribution
    1. Introduction
    2. 6.1 The Standard Normal Distribution
    3. 6.2 Using the Normal Distribution
    4. 6.3 Normal Distribution (Lap Times)
    5. 6.4 Normal Distribution (Pinkie Length)
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  8. 7 The Central Limit Theorem
    1. Introduction
    2. 7.1 The Central Limit Theorem for Sample Means (Averages)
    3. 7.2 The Central Limit Theorem for Sums
    4. 7.3 Using the Central Limit Theorem
    5. 7.4 Central Limit Theorem (Pocket Change)
    6. 7.5 Central Limit Theorem (Cookie Recipes)
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. References
    13. Solutions
  9. 8 Confidence Intervals
    1. Introduction
    2. 8.1 A Single Population Mean using the Normal Distribution
    3. 8.2 A Single Population Mean using the Student t Distribution
    4. 8.3 A Population Proportion
    5. 8.4 Confidence Interval (Home Costs)
    6. 8.5 Confidence Interval (Place of Birth)
    7. 8.6 Confidence Interval (Women's Heights)
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. References
    14. Solutions
  10. 9 Hypothesis Testing with One Sample
    1. Introduction
    2. 9.1 Null and Alternative Hypotheses
    3. 9.2 Outcomes and the Type I and Type II Errors
    4. 9.3 Distribution Needed for Hypothesis Testing
    5. 9.4 Rare Events, the Sample, Decision and Conclusion
    6. 9.5 Additional Information and Full Hypothesis Test Examples
    7. 9.6 Hypothesis Testing of a Single Mean and Single Proportion
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. References
    14. Solutions
  11. 10 Hypothesis Testing with Two Samples
    1. Introduction
    2. 10.1 Two Population Means with Unknown Standard Deviations
    3. 10.2 Two Population Means with Known Standard Deviations
    4. 10.3 Comparing Two Independent Population Proportions
    5. 10.4 Matched or Paired Samples
    6. 10.5 Hypothesis Testing for Two Means and Two Proportions
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. Bringing It Together: Homework
    13. References
    14. Solutions
  12. 11 The Chi-Square Distribution
    1. Introduction
    2. 11.1 Facts About the Chi-Square Distribution
    3. 11.2 Goodness-of-Fit Test
    4. 11.3 Test of Independence
    5. 11.4 Test for Homogeneity
    6. 11.5 Comparison of the Chi-Square Tests
    7. 11.6 Test of a Single Variance
    8. 11.7 Lab 1: Chi-Square Goodness-of-Fit
    9. 11.8 Lab 2: Chi-Square Test of Independence
    10. Key Terms
    11. Chapter Review
    12. Formula Review
    13. Practice
    14. Homework
    15. Bringing It Together: Homework
    16. References
    17. Solutions
  13. 12 Linear Regression and Correlation
    1. Introduction
    2. 12.1 Linear Equations
    3. 12.2 Scatter Plots
    4. 12.3 The Regression Equation
    5. 12.4 Testing the Significance of the Correlation Coefficient
    6. 12.5 Prediction
    7. 12.6 Outliers
    8. 12.7 Regression (Distance from School)
    9. 12.8 Regression (Textbook Cost)
    10. 12.9 Regression (Fuel Efficiency)
    11. Key Terms
    12. Chapter Review
    13. Formula Review
    14. Practice
    15. Homework
    16. Bringing It Together: Homework
    17. References
    18. Solutions
  14. 13 F Distribution and One-Way ANOVA
    1. Introduction
    2. 13.1 One-Way ANOVA
    3. 13.2 The F Distribution and the F-Ratio
    4. 13.3 Facts About the F Distribution
    5. 13.4 Test of Two Variances
    6. 13.5 Lab: One-Way ANOVA
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Homework
    12. References
    13. Solutions
  15. A | Review Exercises (Ch 3-13)
  16. B | Practice Tests (1-4) and Final Exams
  17. C | Data Sets
  18. D | Group and Partner Projects
  19. E | Solution Sheets
  20. F | Mathematical Phrases, Symbols, and Formulas
  21. G | Notes for the TI-83, 83+, 84, 84+ Calculators
  22. H | Tables
  23. Index

Consider the following data set.
4; 5; 6; 6; 6; 7; 7; 7; 7; 7; 7; 8; 8; 8; 9; 10

This data set can be represented by following histogram. Each interval has width one, and each value is located in the middle of an interval.

This histogram matches the supplied data. It consists of 7 adjacent bars with the x-axis split into intervals of 1 from 4 to 10. The heighs of the bars peak in the middle and taper symmetrically to the right and left.
Figure 2.16

The histogram displays a symmetrical distribution of data. A distribution is symmetrical if a vertical line can be drawn at some point in the histogram such that the shape to the left and the right of the vertical line are mirror images of each other. The mean, the median, and the mode are each seven for these data. In a perfectly symmetrical distribution, the mean and the median are the same. This example has one mode (unimodal), and the mode is the same as the mean and median. In a symmetrical distribution that has two modes (bimodal), the two modes would be different from the mean and median.

The histogram for the data: 4; 5; 6; 6; 6; 7; 7; 7; 7; 8 is not symmetrical. The right-hand side seems "chopped off" compared to the left side. A distribution of this type is called skewed to the left because it is pulled out to the left.

This histogram matches the supplied data. It consists of 5 adjacent bars with the x-axis split into intervals of 1 from 4 to 8. The peak is to the right, and the heights of the bars taper down to the left.
Figure 2.17

The mean is 6.3, the median is 6.5, and the mode is seven. Notice that the mean is less than the median, and they are both less than the mode. The mean and the median both reflect the skewing, but the mean reflects it more so.

The histogram for the data: 6; 7; 7; 7; 7; 8; 8; 8; 9; 10, is also not symmetrical. It is skewed to the right.

This histogram matches the supplied data. It consists of 5 adjacent bars with the x-axis split into intervals of 1 from 6 to 10. The peak is to the left, and the heights of the bars taper down to the right.
Figure 2.18

The mean is 7.7, the median is 7.5, and the mode is seven. Of the three statistics, the mean is the largest, while the mode is the smallest. Again, the mean reflects the skewing the most.

To summarize, generally if the distribution of data is skewed to the left, the mean is less than the median, which is often less than the mode. If the distribution of data is skewed to the right, the mode is often less than the median, which is less than the mean.

Skewness and symmetry become important when we discuss probability distributions in later chapters.

Example 2.31

Statistics are used to compare and sometimes identify authors. The following lists shows a simple random sample that compares the letter counts for three authors.

Terry: 7; 9; 3; 3; 3; 4; 1; 3; 2; 2

Davis: 3; 3; 3; 4; 1; 4; 3; 2; 3; 1

Maris: 2; 3; 4; 4; 4; 6; 6; 6; 8; 3

  1. Make a dot plot for the three authors and compare the shapes.
  2. Calculate the mean for each.
  3. Calculate the median for each.
  4. Describe any pattern you notice between the shape and the measures of center.
Solution 2.31
  1. This dot plot matches the supplied data for Terry. The plot uses a number line from 1 to 10. It shows one  x over 1, two x's over 2, four x's over 3, one  x over 4, one x over 7, and one x over 9. There are no x's over the numbers 5, 6, 8, and 10.
    Figure 2.19 Terry’s distribution has a right (positive) skew.
    This dot plot matches the supplied data for Davi. The plot uses a number line from 1 to 10. It shows two  x's over 1, one x over 2, five x's over 3, and two x's over 4. There are no x's over the numbers 5, 6, 7, 8, 9, and 10.
    Figure 2.20 Davis’ distribution has a left (negative) skew
    This dot plot matches the supplied data for Mari. The plot uses a number line from 1 to 10. It shows one x over 2, two x's over 3, three x's over 4, three x's over 6, and one  x over 8. There are no x's over the numbers 1, 5, 7, 9, and 10.
    Figure 2.21 Maris’ distribution is symmetrically shaped.
  2. Terry’s mean is 3.7, Davis’ mean is 2.7, Maris’ mean is 4.6.
  3. Terry’s median is three, Davis’ median is three. Maris’ median is four.
  4. It appears that the median is always closest to the high point (the mode), while the mean tends to be farther out on the tail. In a symmetrical distribution, the mean and the median are both centrally located close to the high point of the distribution.
Try It 2.31

Discuss the mean, median, and mode for each of the following problems. Is there a pattern between the shape and measure of the center?

a.

This dot plot matches the supplied data. The plot uses a number line from 0 to 14. It shows two  x's over 0, four x's over 1, three x's over 2, one x over 3, two x's over the number 4, 5, 6, and 9, and 1 x each over 10 and 14. There are no x's over the numbers 7, 8, 11, 12, and 13.
Figure 2.22

b.

The Ages Former U.S Presidents Died
4 6 9
5 3 6 7 7 7 8
6 0 0 3 3 4 4 5 6 7 7 7 8
7 0 1 1 2 3 4 7 8 8 9
8 0 1 3 5 8
9 0 0 3 3
Key: 8|0 means 80.
Table 2.28

c.

This is a histogram titled Hours Spent Playing Video Games on Weekends. The x-axis shows the number  of hours spent playing video games with bars showing values at intervals of 5. The y-axis shows the number of students. The first bar for 0 - 4.99 hours has a height of 2. The second bar from 5 - 9.99 has a height of 3. The third bar from 10 - 14.99 has a height of 4. The fourth bar from 15 - 19.99 has a height of 7. The fifth bar from 20 - 24.99 has a height of 9.
Figure 2.23
Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics/pages/1-introduction
Citation information

© Sep 19, 2013 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.