Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Introductory Statistics

11.4 Test for Homogeneity

Introductory Statistics11.4 Test for Homogeneity

The goodness–of–fit test can be used to decide whether a population fits a given distribution, but it will not suffice to decide whether two populations follow the same unknown distribution. A different test, called the test for homogeneity, can be used to draw a conclusion about whether two populations have the same distribution. To calculate the test statistic for a test for homogeneity, follow the same procedure as with the test of independence.

Note

The expected value for each cell needs to be at least five in order for you to use this test.

Hypotheses
H0: The distributions of the two populations are the same.

Ha: The distributions of the two populations are not the same.

Test StatisticUse a χ 2 χ 2 test statistic. It is computed in the same way as the test for independence.

Degrees of Freedom (df)df = number of columns - 1

RequirementsAll values in the table must be greater than or equal to five.

Common UsesComparing two populations. For example: men vs. women, before vs. after, east vs. west. The variable is categorical with more than two possible response values.

Example 11.8

Problem

Do male and female college students have the same distribution of living arrangements? Use a level of significance of 0.05. Suppose that 250 randomly selected male college students and 300 randomly selected female college students were asked about their living arrangements: dormitory, apartment, with parents, other. The results are shown in Table 11.19. Do male and female college students have the same distribution of living arrangements?

Dormitory Apartment With Parents Other
Males 72 84 49 45
Females 91 86 88 35
Table 11.19 Distribution of Living Arragements for College Males and College Females

Try It 11.8

Do families and singles have the same distribution of cars? Use a level of significance of 0.05. Suppose that 100 randomly selected families and 200 randomly selected singles were asked what type of car they drove: sport, sedan, hatchback, truck, van/SUV. The results are shown in Table 11.20. Do families and singles have the same distribution of cars? Test at a level of significance of 0.05.

Sport Sedan Hatchback Truck Van/SUV
Family 5 15 35 17 28
Single 45 65 37 46 7
Table 11.20

Example 11.9

Problem

Both before and after a recent earthquake, surveys were conducted asking voters which of the three candidates they planned on voting for in the upcoming city council election. Has there been a change since the earthquake? Use a level of significance of 0.05. Table 11.21 shows the results of the survey. Has there been a change in the distribution of voter preferences since the earthquake?

Perez Chung Stevens
Before 167 128 135
After 214 197 225
Table 11.21

Try It 11.9

Ivy League schools receive many applications, but only some can be accepted. At the schools listed in Table 11.22, two types of applications are accepted: regular and early decision.

Application Type Accepted Brown Columbia Cornell Dartmouth Penn Yale
Regular 2,115 1,792 5,306 1,734 2,685 1,245
Early Decision 577 627 1,228 444 1,195 761
Table 11.22

We want to know if the number of regular applications accepted follows the same distribution as the number of early applications accepted. State the null and alternative hypotheses, the degrees of freedom and the test statistic, sketch the graph of the p-value, and draw a conclusion about the test of homogeneity.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics/pages/1-introduction
Citation information

© Jun 23, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.