Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Introductory Statistics

10.3 Comparing Two Independent Population Proportions

Introductory Statistics10.3 Comparing Two Independent Population Proportions

When conducting a hypothesis test that compares two independent population proportions, the following characteristics should be present:

  1. The two independent samples are simple random samples that are independent.
  2. The number of successes is at least five, and the number of failures is at least five, for each of the samples.
  3. Growing literature states that the population must be at least ten or 20 times the size of the sample. This keeps each population from being over-sampled and causing incorrect results.

Comparing two proportions, like comparing two means, is common. If two estimated proportions are different, it may be due to a difference in the populations or it may be due to chance. A hypothesis test can help determine if a difference in the estimated proportions reflects a difference in the population proportions.

The difference of two proportions follows an approximate normal distribution. Generally, the null hypothesis states that the two proportions are the same. That is, H0: pA = pB. To conduct the test, we use a pooled proportion, pc.

The pooled proportion is calculated as follows:
p c = x A + x B n A + n B p c = x A + x B n A + n B
The distribution for the differences is:
P A P B ~N[0, p c (1 p c )( 1 n A + 1 n B ) ] P A P B ~N[0, p c (1 p c )( 1 n A + 1 n B ) ]
The test statistic (z-score) is:
z= ( p A p B )( p A p B ) p c (1 p c )( 1 n A + 1 n B ) z= ( p A p B )( p A p B ) p c (1 p c )( 1 n A + 1 n B )

Example 10.8

Problem

Two types of medication for hives are being tested to determine if there is a difference in the proportions of adult patient reactions. Twenty out of a random sample of 200 adults given medication A still had hives 30 minutes after taking the medication. Twelve out of another random sample of 200 adults given medication B still had hives 30 minutes after taking the medication. Test at a 1% level of significance.

Try It 10.8

Two types of valves are being tested to determine if there is a difference in pressure tolerances. Fifteen out of a random sample of 100 of Valve A cracked under 4,500 psi. Six out of a random sample of 100 of Valve B cracked under 4,500 psi. Test at a 5% level of significance.

Example 10.9

Problem

A research study was conducted about gender differences in “sexting.” The researcher believed that the proportion of girls involved in “sexting” is less than the proportion of boys involved. The data collected in the spring of 2010 among a random sample of middle and high school students in a large school district in the southern United States is summarized in Table 10.10. Is the proportion of girls sending sexts less than the proportion of boys “sexting?” Test at a 1% level of significance.

MalesFemales
Sent “sexts” 183 156
Total number surveyed 2231 2169
Table 10.10

Example 10.10

Problem

Researchers conducted a study of smartphone use among adults. A cell phone company claimed that iPhone smartphones are more popular with White people (non-Hispanic) than with African Americans. The results of the survey indicate that of the 232 African American cell phone owners randomly sampled, 5% have an iPhone. Of the 1,343 White cell phone owners randomly sampled, 10% own an iPhone. Test at the 5% level of significance. Is the proportion of White iPhone owners greater than the proportion of African American iPhone owners?

Try It 10.10

A concerned group of citizens wanted to know if the proportion of forcible rapes in Texas was different in 2011 than in 2010. Their research showed that of the 113,231 violent crimes in Texas in 2010, 7,622 of them were forcible rapes. In 2011, 7,439 of the 104,873 violent crimes were in the forcible rape category. Test at a 5% significance level. Answer the following questions:

a. Is this a test of two means or two proportions?

b. Which distribution do you use to perform the test?

c. What is the random variable?

d. What are the null and alternative hypothesis? Write the null and alternative hypothesis in symbols.

e. Is this test right-, left-, or two-tailed?

f. What is the p-value?

g. Do you reject or not reject the null hypothesis?

h. At the ___ level of significance, from the sample data, there ______ (is/is not) sufficient evidence to conclude that ____________.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-statistics/pages/1-introduction
Citation information

© Jun 23, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.