Skip to Content
OpenStax Logo
Introductory Business Statistics

4.1 Hypergeometric Distribution

Introductory Business Statistics4.1 Hypergeometric Distribution
Buy book
  1. Preface
  2. 1 Sampling and Data
    1. Introduction
    2. 1.1 Definitions of Statistics, Probability, and Key Terms
    3. 1.2 Data, Sampling, and Variation in Data and Sampling
    4. 1.3 Levels of Measurement
    5. 1.4 Experimental Design and Ethics
    6. Key Terms
    7. Chapter Review
    8. Homework
    9. References
    10. Solutions
  3. 2 Descriptive Statistics
    1. Introduction
    2. 2.1 Display Data
    3. 2.2 Measures of the Location of the Data
    4. 2.3 Measures of the Center of the Data
    5. 2.4 Sigma Notation and Calculating the Arithmetic Mean
    6. 2.5 Geometric Mean
    7. 2.6 Skewness and the Mean, Median, and Mode
    8. 2.7 Measures of the Spread of the Data
    9. Key Terms
    10. Chapter Review
    11. Formula Review
    12. Practice
    13. Homework
    14. Bringing It Together: Homework
    15. References
    16. Solutions
  4. 3 Probability Topics
    1. Introduction
    2. 3.1 Terminology
    3. 3.2 Independent and Mutually Exclusive Events
    4. 3.3 Two Basic Rules of Probability
    5. 3.4 Contingency Tables and Probability Trees
    6. 3.5 Venn Diagrams
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Bringing It Together: Practice
    12. Homework
    13. Bringing It Together: Homework
    14. References
    15. Solutions
  5. 4 Discrete Random Variables
    1. Introduction
    2. 4.1 Hypergeometric Distribution
    3. 4.2 Binomial Distribution
    4. 4.3 Geometric Distribution
    5. 4.4 Poisson Distribution
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  6. 5 Continuous Random Variables
    1. Introduction
    2. 5.1 Properties of Continuous Probability Density Functions
    3. 5.2 The Uniform Distribution
    4. 5.3 The Exponential Distribution
    5. Key Terms
    6. Chapter Review
    7. Formula Review
    8. Practice
    9. Homework
    10. References
    11. Solutions
  7. 6 The Normal Distribution
    1. Introduction
    2. 6.1 The Standard Normal Distribution
    3. 6.2 Using the Normal Distribution
    4. 6.3 Estimating the Binomial with the Normal Distribution
    5. Key Terms
    6. Chapter Review
    7. Formula Review
    8. Practice
    9. Homework
    10. References
    11. Solutions
  8. 7 The Central Limit Theorem
    1. Introduction
    2. 7.1 The Central Limit Theorem for Sample Means
    3. 7.2 Using the Central Limit Theorem
    4. 7.3 The Central Limit Theorem for Proportions
    5. 7.4 Finite Population Correction Factor
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  9. 8 Confidence Intervals
    1. Introduction
    2. 8.1 A Confidence Interval for a Population Standard Deviation, Known or Large Sample Size
    3. 8.2 A Confidence Interval for a Population Standard Deviation Unknown, Small Sample Case
    4. 8.3 A Confidence Interval for A Population Proportion
    5. 8.4 Calculating the Sample Size n: Continuous and Binary Random Variables
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  10. 9 Hypothesis Testing with One Sample
    1. Introduction
    2. 9.1 Null and Alternative Hypotheses
    3. 9.2 Outcomes and the Type I and Type II Errors
    4. 9.3 Distribution Needed for Hypothesis Testing
    5. 9.4 Full Hypothesis Test Examples
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  11. 10 Hypothesis Testing with Two Samples
    1. Introduction
    2. 10.1 Comparing Two Independent Population Means
    3. 10.2 Cohen's Standards for Small, Medium, and Large Effect Sizes
    4. 10.3 Test for Differences in Means: Assuming Equal Population Variances
    5. 10.4 Comparing Two Independent Population Proportions
    6. 10.5 Two Population Means with Known Standard Deviations
    7. 10.6 Matched or Paired Samples
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. Bringing It Together: Homework
    14. References
    15. Solutions
  12. 11 The Chi-Square Distribution
    1. Introduction
    2. 11.1 Facts About the Chi-Square Distribution
    3. 11.2 Test of a Single Variance
    4. 11.3 Goodness-of-Fit Test
    5. 11.4 Test of Independence
    6. 11.5 Test for Homogeneity
    7. 11.6 Comparison of the Chi-Square Tests
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. Bringing It Together: Homework
    14. References
    15. Solutions
  13. 12 F Distribution and One-Way ANOVA
    1. Introduction
    2. 12.1 Test of Two Variances
    3. 12.2 One-Way ANOVA
    4. 12.3 The F Distribution and the F-Ratio
    5. 12.4 Facts About the F Distribution
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  14. 13 Linear Regression and Correlation
    1. Introduction
    2. 13.1 The Correlation Coefficient r
    3. 13.2 Testing the Significance of the Correlation Coefficient
    4. 13.3 Linear Equations
    5. 13.4 The Regression Equation
    6. 13.5 Interpretation of Regression Coefficients: Elasticity and Logarithmic Transformation
    7. 13.6 Predicting with a Regression Equation
    8. 13.7 How to Use Microsoft Excel® for Regression Analysis
    9. Key Terms
    10. Chapter Review
    11. Practice
    12. Solutions
  15. A | Statistical Tables
  16. B | Mathematical Phrases, Symbols, and Formulas
  17. Index

The simplest probability density function is the hypergeometric. This is the most basic one because it is created by combining our knowledge of probabilities from Venn diagrams, the addition and multiplication rules, and the combinatorial counting formula.

To find the number of ways to get 2 aces from the four in the deck we computed:

42 =4!2!(4-2)!=642=4!2!(4-2)!=6

And if we did not care what else we had in our hand for the other three cards we would compute:

483 =48!3!45!=17,296483=48!3!45!=17,296

Putting this together, we can compute the probability of getting exactly two aces in a 5 card poker hand as:

42483525=.039942483525=.0399

This solution is really just the probability distribution known as the Hypergeometric. The generalized formula is:

h(x) = A x N-A n-x Nnh(x)= A x N-A n-x Nn

where x = the number we are interested in coming from the group with A objects.

h(x) is the probability of x successes, in n attempts, when A successes (aces in this case) are in a population that contains N elements. The hypergeometric distribution is an example of a discrete probability distribution because there is no possibility of partial success, that is, there can be no poker hands with 2 1/2 aces. Said another way, a discrete random variable has to be a whole, or counting, number only. This probability distribution works in cases where the probability of a success changes with each draw. Another way of saying this is that the events are NOT independent. In using a deck of cards, we are sampling WITHOUT replacement. If we put each card back after it was drawn then the hypergeometric distribution be an inappropriate Pdf.

For the hypergeometric to work,

  1. the population must be dividable into two and only two independent subsets (aces and non-aces in our example). The random variable X = the number of items from the group of interest.
  2. the experiment must have changing probabilities of success with each experiment (the fact that cards are not replaced after the draw in our example makes this true in this case). Another way to say this is that you sample without replacement and therefore each pick is not independent.
  3. the random variable must be discrete, rather than continuous.

Example 4.1

A candy dish contains 30 jelly beans and 20 gumdrops. Ten candies are picked at random. What is the probability that 5 of the 10 are gumdrops? The two groups are jelly beans and gumdrops. Since the probability question asks for the probability of picking gumdrops, the group of interest (first group A in the formula) is gumdrops. The size of the group of interest (first group) is 30. The size of the second group is 20. The size of the sample is 10 (jelly beans or gumdrops). Let X = the number of gumdrops in the sample of 10. X takes on the values x = 0, 1, 2, ..., 10. a. What is the probability statement written mathematically? b. What is the hypergeometric probability density function written out to solve this problem? c. What is the answer to the question "What is the probability of drawing 5 gumdrops in 10 picks from the dish?"

Solution 4.1

a. P(x=5)P(x=5)
b. P(x=5)=(530)(520)(1050)P(x=5)=(530)(520)(1050)
c. P(x=5)=0.215P(x=5)=0.215

Try It 4.1

A bag contains letter tiles. Forty-four of the tiles are vowels, and 56 are consonants. Seven tiles are picked at random. You want to know the probability that four of the seven tiles are vowels. What is the group of interest, the size of the group of interest, and the size of the sample?

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-business-statistics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-business-statistics/pages/1-introduction
Citation information

© Nov 29, 2017 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.