Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Introductory Business Statistics

13.3 Linear Equations

Introductory Business Statistics13.3 Linear Equations

Linear regression for two variables is based on a linear equation with one independent variable. The equation has the form:

y = a + bx y=a+bx


where a and b are constant numbers.

The variable x is the independent variable, and y is the dependent variable. Another way to think about this equation is a statement of cause and effect. The X variable is the cause and the Y variable is the hypothesized effect. Typically, you choose a value to substitute for the independent variable and then solve for the dependent variable.

Example 13.1

The following examples are linear equations.

y=3+2xy=3+2x
y=–0.01+1.2xy=–0.01+1.2x

The graph of a linear equation of the form y = a + bx is a straight line. Any line that is not vertical can be described by this equation.

Example 13.2

Graph the equation y = –1 + 2x.

Graph of the equation y = -1 + 2x.  This is a straight line that crosses the y-axis at -1 and is sloped up and to the right, rising 2 units for every one unit of run.
Figure 13.3

Try It 13.2

Is the following an example of a linear equation? Why or why not?

This is a graph of an equation. The x-axis is labeled in intervals of 2 from 0 - 14; the y-axis is labeled in intervals of 2 from 0 - 12. The equation's graph is a curve that crosses the y-axis at 2 and curves upward and to the right.
Figure 13.4

Example 13.3

Aaron's Word Processing Service (AWPS) does word processing. The rate for services is $32 per hour plus a $31.50 one-time charge. The total cost to a customer depends on the number of hours it takes to complete the job.

Problem

Find the equation that expresses the total cost in terms of the number of hours required to complete the job.

Slope and Y-Intercept of a Linear Equation

For the linear equation y = a + bx, b = slope and a = y-intercept. From algebra recall that the slope is a number that describes the steepness of a line, and the y-intercept is the y coordinate of the point (0, a) where the line crosses the y-axis. From calculus the slope is the first derivative of the function. For a linear function the slope is dy / dx = b where we can read the mathematical expression as "the change in y (dy) that results from a change in x (dx) = b * dx".

Three possible graphs of the equation y = a + bx. For the first graph, (a), b > 0 and so the line slopes upward to the right. For the second, b = 0 and the graph of the equation is a horizontal line. In the third graph, (c), b < 0 and the line slopes downward to the right.
Figure 13.5 Three possible graphs of y = a + bx. (a) If b > 0, the line slopes upward to the right. (b) If b = 0, the line is horizontal. (c) If b < 0, the line slopes downward to the right.

Example 13.4

Svetlana tutors to make extra money for college. For each tutoring session, she charges a one-time fee of $25 plus $15 per hour of tutoring. A linear equation that expresses the total amount of money Svetlana earns for each session she tutors is y = 25 + 15x.

Problem

What are the independent and dependent variables? What is the y-intercept and what is the slope? Interpret them using complete sentences.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-business-statistics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-business-statistics/pages/1-introduction
Citation information

© Jun 23, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.