Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Menu
Table of contents
  1. Preface
  2. 1 Sampling and Data
    1. Introduction
    2. 1.1 Definitions of Statistics, Probability, and Key Terms
    3. 1.2 Data, Sampling, and Variation in Data and Sampling
    4. 1.3 Levels of Measurement
    5. 1.4 Experimental Design and Ethics
    6. Key Terms
    7. Chapter Review
    8. Homework
    9. References
    10. Solutions
  3. 2 Descriptive Statistics
    1. Introduction
    2. 2.1 Display Data
    3. 2.2 Measures of the Location of the Data
    4. 2.3 Measures of the Center of the Data
    5. 2.4 Sigma Notation and Calculating the Arithmetic Mean
    6. 2.5 Geometric Mean
    7. 2.6 Skewness and the Mean, Median, and Mode
    8. 2.7 Measures of the Spread of the Data
    9. Key Terms
    10. Chapter Review
    11. Formula Review
    12. Practice
    13. Homework
    14. Bringing It Together: Homework
    15. References
    16. Solutions
  4. 3 Probability Topics
    1. Introduction
    2. 3.1 Terminology
    3. 3.2 Independent and Mutually Exclusive Events
    4. 3.3 Two Basic Rules of Probability
    5. 3.4 Contingency Tables and Probability Trees
    6. 3.5 Venn Diagrams
    7. Key Terms
    8. Chapter Review
    9. Formula Review
    10. Practice
    11. Bringing It Together: Practice
    12. Homework
    13. Bringing It Together: Homework
    14. References
    15. Solutions
  5. 4 Discrete Random Variables
    1. Introduction
    2. 4.1 Hypergeometric Distribution
    3. 4.2 Binomial Distribution
    4. 4.3 Geometric Distribution
    5. 4.4 Poisson Distribution
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  6. 5 Continuous Random Variables
    1. Introduction
    2. 5.1 Properties of Continuous Probability Density Functions
    3. 5.2 The Uniform Distribution
    4. 5.3 The Exponential Distribution
    5. Key Terms
    6. Chapter Review
    7. Formula Review
    8. Practice
    9. Homework
    10. References
    11. Solutions
  7. 6 The Normal Distribution
    1. Introduction
    2. 6.1 The Standard Normal Distribution
    3. 6.2 Using the Normal Distribution
    4. 6.3 Estimating the Binomial with the Normal Distribution
    5. Key Terms
    6. Chapter Review
    7. Formula Review
    8. Practice
    9. Homework
    10. References
    11. Solutions
  8. 7 The Central Limit Theorem
    1. Introduction
    2. 7.1 The Central Limit Theorem for Sample Means
    3. 7.2 Using the Central Limit Theorem
    4. 7.3 The Central Limit Theorem for Proportions
    5. 7.4 Finite Population Correction Factor
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  9. 8 Confidence Intervals
    1. Introduction
    2. 8.1 A Confidence Interval for a Population Standard Deviation, Known or Large Sample Size
    3. 8.2 A Confidence Interval for a Population Standard Deviation Unknown, Small Sample Case
    4. 8.3 A Confidence Interval for A Population Proportion
    5. 8.4 Calculating the Sample Size n: Continuous and Binary Random Variables
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  10. 9 Hypothesis Testing with One Sample
    1. Introduction
    2. 9.1 Null and Alternative Hypotheses
    3. 9.2 Outcomes and the Type I and Type II Errors
    4. 9.3 Distribution Needed for Hypothesis Testing
    5. 9.4 Full Hypothesis Test Examples
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  11. 10 Hypothesis Testing with Two Samples
    1. Introduction
    2. 10.1 Comparing Two Independent Population Means
    3. 10.2 Cohen's Standards for Small, Medium, and Large Effect Sizes
    4. 10.3 Test for Differences in Means: Assuming Equal Population Variances
    5. 10.4 Comparing Two Independent Population Proportions
    6. 10.5 Two Population Means with Known Standard Deviations
    7. 10.6 Matched or Paired Samples
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. Bringing It Together: Homework
    14. References
    15. Solutions
  12. 11 The Chi-Square Distribution
    1. Introduction
    2. 11.1 Facts About the Chi-Square Distribution
    3. 11.2 Test of a Single Variance
    4. 11.3 Goodness-of-Fit Test
    5. 11.4 Test of Independence
    6. 11.5 Test for Homogeneity
    7. 11.6 Comparison of the Chi-Square Tests
    8. Key Terms
    9. Chapter Review
    10. Formula Review
    11. Practice
    12. Homework
    13. Bringing It Together: Homework
    14. References
    15. Solutions
  13. 12 F Distribution and One-Way ANOVA
    1. Introduction
    2. 12.1 Test of Two Variances
    3. 12.2 One-Way ANOVA
    4. 12.3 The F Distribution and the F-Ratio
    5. 12.4 Facts About the F Distribution
    6. Key Terms
    7. Chapter Review
    8. Formula Review
    9. Practice
    10. Homework
    11. References
    12. Solutions
  14. 13 Linear Regression and Correlation
    1. Introduction
    2. 13.1 The Correlation Coefficient r
    3. 13.2 Testing the Significance of the Correlation Coefficient
    4. 13.3 Linear Equations
    5. 13.4 The Regression Equation
    6. 13.5 Interpretation of Regression Coefficients: Elasticity and Logarithmic Transformation
    7. 13.6 Predicting with a Regression Equation
    8. 13.7 How to Use Microsoft Excel® for Regression Analysis
    9. Key Terms
    10. Chapter Review
    11. Practice
    12. Solutions
  15. A | Statistical Tables
  16. B | Mathematical Phrases, Symbols, and Formulas
  17. Index

Linear regression for two variables is based on a linear equation with one independent variable. The equation has the form:

y = a + bx y=a+bx


where a and b are constant numbers.

The variable x is the independent variable, and y is the dependent variable. Another way to think about this equation is a statement of cause and effect. The X variable is the cause and the Y variable is the hypothesized effect. Typically, you choose a value to substitute for the independent variable and then solve for the dependent variable.

Example 13.1

The following examples are linear equations.

y=3+2xy=3+2x
y=–0.01+1.2xy=–0.01+1.2x

The graph of a linear equation of the form y = a + bx is a straight line. Any line that is not vertical can be described by this equation.

Example 13.2

Graph the equation y = –1 + 2x.

Graph of the equation y = -1 + 2x.  This is a straight line that crosses the y-axis at -1 and is sloped up and to the right, rising 2 units for every one unit of run.
Figure 13.3

Try It 13.2

Is the following an example of a linear equation? Why or why not?

This is a graph of an equation. The x-axis is labeled in intervals of 2 from 0 - 14; the y-axis is labeled in intervals of 2 from 0 - 12. The equation's graph is a curve that crosses the y-axis at 2 and curves upward and to the right.
Figure 13.4

Example 13.3

Aaron's Word Processing Service (AWPS) does word processing. The rate for services is $32 per hour plus a $31.50 one-time charge. The total cost to a customer depends on the number of hours it takes to complete the job.

Problem

Find the equation that expresses the total cost in terms of the number of hours required to complete the job.

Slope and Y-Intercept of a Linear Equation

For the linear equation y = a + bx, b = slope and a = y-intercept. From algebra recall that the slope is a number that describes the steepness of a line, and the y-intercept is the y coordinate of the point (0, a) where the line crosses the y-axis. From calculus the slope is the first derivative of the function. For a linear function the slope is dy / dx = b where we can read the mathematical expression as "the change in y (dy) that results from a change in x (dx) = b * dx".

Three possible graphs of the equation y = a + bx. For the first graph, (a), b > 0 and so the line slopes upward to the right. For the second, b = 0 and the graph of the equation is a horizontal line. In the third graph, (c), b < 0 and the line slopes downward to the right.
Figure 13.5 Three possible graphs of y = a + bx. (a) If b > 0, the line slopes upward to the right. (b) If b = 0, the line is horizontal. (c) If b < 0, the line slopes downward to the right.

Example 13.4

Svetlana tutors to make extra money for college. For each tutoring session, she charges a one-time fee of $25 plus $15 per hour of tutoring. A linear equation that expresses the total amount of money Svetlana earns for each session she tutors is y = 25 + 15x.

Problem

What are the independent and dependent variables? What is the y-intercept and what is the slope? Interpret them using complete sentences.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-business-statistics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-business-statistics/pages/1-introduction
Citation information

© Jun 23, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.