Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

1.
  1. U(24, 26), 25, 0.5774
  2. N(25, 0.0577)
  3. 0.0416
3.

0.0003

5.

25.07

7.
  1. N(2,500, 5.7735)
  2. 0
9.

2,507.40

11.
  1. 10
  2. 1 10 1 10
13.

N ( 10,  10 8 ) ( 10,  10 8 )

15.

0.7799

17.

1.69

19.

0.0072

21.

391.54

23.

405.51

25.

Mean = 25, standard deviation = 2/7

26.

Mean = 48, standard deviation = 5/6

27.

Mean = 90, standard deviation = 3/4

28.

Mean = 120, standard deviation = 0.38

29.

Mean = 17, standard deviation = 0.17

30.

Expected value = 17, standard deviation = 0.05

31.

Expected value = 38, standard deviation = 0.43

32.

Expected value = 14, standard deviation = 0.65

33.

0.23

34.

0.060

35.

1/5

36.

0.063

37.

1/3

38.

0.056

39.

1/10

40.

0.042

41.

0.999

42.

0.901

43.

0.301

44.

0.832

45.

0.483

46.

0.500

47.

0.502

48.

0.519

49.
  1. Χ = amount of change students carry
  2. Χ ~ E(0.88, 0.88)
  3. X X = average amount of change carried by a sample of 25 students.
  4. X X ~ N(0.88, 0.176)
  5. 0.0819
  6. 0.4276
  7. The distributions are different. Part a is exponential and part b is normal.
51.
  1. length of time for an individual to complete IRS form 1040, in hours.
  2. mean length of time for a sample of 36 taxpayers to complete IRS form 1040, in hours.
  3. N ( 10.53,  1 3 ) ( 10.53,  1 3 )
  4. Yes. I would be surprised, because the probability is almost 0.
  5. No. I would not be totally surprised because the probability is 0.2312
53.
  1. the length of a song, in minutes, in the collection
  2. U(2, 3.5)
  3. the average length, in minutes, of the songs from a sample of five albums from the collection
  4. N(2.75, 0.066)
  5. 2.74 minutes
  6. 0.03 minutes
55.
  1. True. The mean of a sampling distribution of the means is approximately the mean of the data distribution.
  2. True. According to the Central Limit Theorem, the larger the sample, the closer the sampling distribution of the means becomes normal.
  3. False. The standard deviation of the sample distribution of the means will decrease as the sample size increases; however, the standard deviation of the sample distribution of the means will not equal the standard deviation of X.
57.
  1. X = the yearly income of someone in a developing country
  2. the average salary from samples of 1,000 residents of a developing country
  3. X X N ( 2000,  8000 1000 ) ( 2000,  8000 1000 )
  4. Very wide differences in data values can have averages smaller than standard deviations.
  5. The distribution of the sample mean will have higher probabilities closer to the population mean.
    P(2000 < X X < 2100) = 0.1537
    P(2100 < X X < 2200) = 0.1317
59.

b

60.

64

61.
  1. Yes
  2. Yes
  3. Yes
  4. 0.6
62.

400

63.

2.5

64.

25

65.

0.0087

66.

0.0064, 0.0064

67.
  1. It has no effect.
  2. It is divided by 22.
  3. It is divided by 2.
68.
  1. 4/5
  2. 0.04
  3. 0.0016
69.
  1. Yes
  2. No
70.

0.955

71.

0.927

72.

0.648

73.

0.101

74.

0.273

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introductory-business-statistics-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introductory-business-statistics-2e/pages/1-introduction
Citation information

© Jul 18, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.