Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

8.1 The Chemical Senses are Several Distinct Sensory Systems

Chaudhari, N., & Roper, S. D. (2010). The cell biology of taste. The Journal of Cell Biology, 190(3), 285–296. https://doi.org/10.1083/jcb.201003144

Scholz, A. T., Horrall, R. M., Cooper, J. C., & Hasler, A. D. (1976). Imprinting to chemical cues: The basis for home stream selection in salmon. Science, 192(4245), 1247–1249. https://doi.org/10.1126/science.1273590

Yarmolinsky, D. A., Zuker, C. S., & Ryba, N. J. (2009). Common sense about taste: From mammals to insects. Cell, 139(2), 234–244. https://doi.org/10.1016/j.cell.2009.10.001

8.2 The Gustatory System

Ahmad, R., & Dalziel, J. E. (2020). G protein-coupled receptors in taste physiology and pharmacology. Frontiers in Pharmacology, 11, 587664. https://doi.org/10.3389/fphar.2020.587664

Avery, J. A., Liu, A. G., Ingeholm, J. E., Gotts, S. J., & Martin, A. (2021). Viewing images of foods evokes taste quality-specific activity in gustatory insular cortex. Proceedings of the National Academy of Sciences of the United States of America, 118(2), e2010932118. https://doi.org/10.1073/pnas.2010932118

Besnard, P., Passilly-Degrace, P., & Khan, N. A. (2016). Taste of fat: A sixth taste modality?. Physiological Reviews, 96(1), 151–176. https://doi.org/10.1152/physrev.00002.2015

Barboza, M. L. B., & Reyno, B. (2022). Taste receptors in aquatic mammals: Potential role of solitary chemosensory cells in immune responses. The Anatomical Record (Hoboken, N.J.: 2007), 305(3), 680–687. https://doi.org/10.1002/ar.24708

Barlow, L. A. (2022). The sense of taste: Development, regeneration, and dysfunction. WIREs Mechanisms of Disease, 14(3), e1547. https://doi.org/10.1002/wsbm.1547

Barretto, R. P., Gillis-Smith, S., Chandrashekar, J., Yarmolinsky, D. A., Schnitzer, M. J., Ryba, N. J., & Zuker, C. S. (2015). The neural representation of taste quality at the periphery. Nature, 517(7534), 373–376. https://doi.org/10.1038/nature13873

Behrens, M., & Meyerhof, W. (2018). Vertebrate bitter taste receptors: Keys for survival in changing environments. Journal of Agricultural and Food Chemistry, 66(10), 2204–2213. https://doi.org/10.1021/acs.jafc.6b04835

Behrens, M., & Ziegler, F. (2020). Structure-function analyses of human bitter taste receptors—Where do we stand?. Molecules (Basel, Switzerland), 25(19), 4423. https://doi.org/10.3390/molecules25194423

Bradley, R. M. (Ed.). (2007). The Role of the Nucleus of the Solitary Tract in Gustatory Processing. CRC Press/Taylor & Francis.

Burnstock, G. (2020). Introduction to purinergic signaling. Methods in Molecular Biology (Clifton, N.J.), 2041, 1–15. https://doi.org/10.1007/978-1-4939-9717-6_1

Bystrova, M. F., Romanov, R. A., Rogachevskaja, O. A., Churbanov, G. D., & Kolesnikov, S. S. (2010). Functional expression of the extracellular-Ca2+-sensing receptor in mouse taste cells. Journal of Cell Science, 123(Pt 6), 972–982. https://doi.org/10.1242/jcs.061879

Cai, H., Maudsley, S., & Martin, B. (2014). What is the role of metabolic hormones in taste buds of the tongue. Frontiers of Hormone Research, 42, 134–146. https://doi.org/10.1159/000358322

Caprio, J., Brand, J. G., Teeter, J. H., Valentincic, T., Kalinoski, D. L., Kohbara, J., Kumazawa, T., & Wegert, S. (1993). The taste system of the channel catfish: From biophysics to behavior. Trends in Neurosciences, 16(5), 192–197. https://doi.org/10.1016/0166-2236(93)90152-c

Chan, C. Y., Yoo, J. E., & Travers, S. P. (2004). Diverse bitter stimuli elicit highly similar patterns of Fos-like immunoreactivity in the nucleus of the solitary tract. Chemical Senses, 29(7), 573–581. https://doi.org/10.1093/chemse/bjh062

Chaudhari, N. (2014). Synaptic communication and signal processing among sensory cells in taste buds. The Journal of Physiology, 592(16), 3387–3392. https://doi.org/10.1113/jphysiol.2013.269837

Chen, X., Gabitto, M., Peng, Y., Ryba, N. J., & Zuker, C. S. (2011). A gustotopic map of taste qualities in the mammalian brain. Science (New York, N.Y.), 333(6047), 1262–1266. https://doi.org/10.1126/science.1204076

Chyb, S., Dahanukar, A., Wickens, A., & Carlson, J. R. (2003). Drosophila Gr5a encodes a taste receptor tuned to trehalose. Proceedings of the National Academy of Sciences of the United States of America, 100 Suppl 2(Suppl 2), 14526–14530. https://doi.org/10.1073/pnas.2135339100

Dahir, N. S., Calder, A. N., McKinley, B. J., Liu, Y., & Gilbertson, T. A. (2021). Sex differences in fat taste responsiveness are modulated by estradiol. American Journal of Physiology. Endocrinology and Metabolism, 320(3), E566–E580. https://doi.org/10.1152/ajpendo.00331.2020

Dando, R., Pereira, E., Kurian, M., Barro-Soria, R., Chaudhari, N., & Roper, S. D. (2015). A permeability barrier surrounds taste buds in lingual epithelia. American Journal of Physiology. Cell Physiology, 308(1), C21–C32. https://doi.org/10.1152/ajpcell.00157.2014

Dethier, V. G., & Clark, B. (1962). To know a fly. Holden-Day.

Dutta Banik, D., Benfey, E. D., Martin, L. E., Kay, K. E., Loney, G. C., Nelson, A. R., Ahart, Z. C., Kemp, B. T., Kemp, B. R., Torregrossa, A. M., & Medler, K. F. (2020). A subset of broadly responsive type III taste cells contribute to the detection of bitter, sweet and umami stimuli. PLoS Genetics, 16(8), e1008925. https://doi.org/10.1371/journal.pgen.1008925

Elson, A. E., Dotson, C. D., Egan, J. M., & Munger, S. D. (2010). Glucagon signaling modulates sweet taste responsiveness. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 24(10), 3960–3969. https://doi.org/10.1096/fj.10-158105

Farbman, A. I. (1965). Fine structure of the taste bud. Journal of Ultrastructure Research, 12, 328–350. https://doi.org/10.1016/s0022-5320(65)80103-4

French, A., Ali Agha, M., Mitra, A., Yanagawa, A., Sellier, M. J., & Marion-Poll, F. (2015). Drosophila bitter taste(s). Frontiers in Integrative Neuroscience, 9, 58. https://doi.org/10.3389/fnint.2015.00058

Gaillard, D., Laugerette, F., Darcel, N., El-Yassimi, A., Passilly-Degrace, P., Hichami, A., Khan, N. A., Montmayeur, J. P., & Besnard, P. (2008). The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 22(5), 1458–1468. https://doi.org/10.1096/fj.07-8415com

Glendinning, J. I. (2008). Insect gustatory systems. In The Senses: A Comprehensive Reference (Vol. 4, pp. 75–95).

Grosvenor, W., Rhoads, D. E., & Kass-Simon, G. (1996). Chemoreceptive control of feeding processes in hydra. Chemical Senses, 21(3), 313–321. https://doi.org/10.1093/chemse/21.3.313

Harris, D. T., Kallman, B. R., Mullaney, B. C., & Scott, K. (2015). Representations of taste modality in the Drosophila brain. Neuron, 86(6), 1449–1460. https://doi.org/10.1016/j.neuron.2015.05.026

He, Z., Luo, Y., Shang, X., Sun, J. S., & Carlson, J. R. (2019). Chemosensory sensilla of the Drosophila wing express a candidate ionotropic pheromone receptor. PLoS Biology, 17(5), e2006619. https://doi.org/10.1371/journal.pbio.2006619

Huang, A. L., Chen, X., Hoon, M. A., Chandrashekar, J., Guo, W., Tränkner, D., Ryba, N. J., & Zuker, C. S. (2006). The cells and logic for mammalian sour taste detection. Nature, 442(7105), 934–938. https://doi.org/10.1038/nature05084

Ishimaru, Y., Inada, H., Kubota, M., Zhuang, H., Tominaga, M., & Matsunami, H. (2006). Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12569–12574. https://doi.org/10.1073/pnas.0602702103

Ito, K., Suzuki, K., Estes, P., Ramaswami, M., Yamamoto, D., & Strausfeld, N. J. (1998). The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learning & Memory (Cold Spring Harbor, N.Y.), 5(1–2), 52–77.

Kim, H., Kirkhart, C., & Scott, K. (2017). Long-range projection neurons in the taste circuit of Drosophila. eLife, 6, e23386. https://doi.org/10.7554/eLife.23386

Kinnamon, S. C., & Finger, T. E. (2019). Recent advances in taste transduction and signaling [version 1; peer review: 2 approved]. F1000Research, 8(F1000 Faculty Rev):2117. https://doi.org/10.12688/f1000research.21099.1

Kirino, M., Parnes, J., Hansen, A., Kiyohara, S., & Finger, T. E. (2013). Evolutionary origins of taste buds: Phylogenetic analysis of purinergic neurotransmission in epithelial chemosensors. Open Biology, 3(3), 130015. https://doi.org/10.1098/rsob.130015

Krashes, M. J., & Chesler, A. T. (2019). Acid tongues cause sour thoughts. Cell, 179(2), 287–289. https://doi.org/10.1016/j.cell.2019.09.013

Kurihara, K. (2015). Umami the fifth basic taste: History of studies on receptor mechanisms and role as a food flavor. BioMed Research International, 2015, 189402. https://doi.org/10.1155/2015/189402

Lavi, K., Jacobson, G. A., Rosenblum, K., & Lüthi, A. (2018). Encoding of conditioned taste aversion in cortico-amygdala circuits. Cell Reports, 24(2), 278–283. https://doi.org/10.1016/j.celrep.2018.06.053

Lee, H., Macpherson, L. J., Parada, C. A., Zuker, C. S., & Ryba, N. J. P. (2017). Rewiring the taste system. Nature, 548(7667), 330–333. https://doi.org/10.1038/nature23299

Li, Q., Zhang, L., & Lametsch, R. (2022). Current progress in kokumi-active peptides, evaluation and preparation methods: A review. Critical Reviews in Food Science and Nutrition, 62(5), 1230–1241. https://doi.org/10.1080/10408398.2020.1837726

Lossow, K., Hermans-Borgmeyer, I., Meyerhof, W., & Behrens, M. (2020). Segregated expression of ENaC subunits in taste cells. Chemical Senses, 45(4), 235–248. https://doi.org/10.1093/chemse/bjaa004

Lundin, C., Käll, L., Kreher, S. A., Kapp, K., Sonnhammer, E. L., Carlson, J. R., von Heijne, G., & Nilsson, I. (2007). Membrane topology of the Drosophila OR83b odorant receptor. FEBS Letters, 581(29), 5601–5604. https://doi.org/10.1016/j.febslet.2007.11.007

Ma, Z., Taruno, A., Ohmoto, M., Jyotaki, M., Lim, J. C., Miyazaki, H., Niisato, N., Marunaka, Y., Lee, R. J., Hoff, H., Payne, R., Demuro, A., Parker, I., Mitchell, C. H., Henao-Mejia, J., Tanis, J. E., Matsumoto, I., Tordoff, M. G., & Foskett, J. K. (2018). CALHM3 is essential for rapid ion channel-mediated purinergic neurotransmission of GPCR-mediated tastes. Neuron, 98(3), 547–561.e10. https://doi.org/10.1016/j.neuron.2018.03.043

Masek, P., Worden, K., Aso, Y., Rubin, G. M., & Keene, A. C. (2015). A dopamine-modulated neural circuit regulating aversive taste memory in Drosophila. Current Biology: CB, 25(11), 1535–1541. https://doi.org/10.1016/j.cub.2015.04.027

Margolskee, R. F. (2002). Molecular mechanisms of bitter and sweet taste transduction. The Journal of Biological Chemistry, 277(1), 1–4. https://doi.org/10.1074/jbc.R100054200

Martin, L. J., & Sollars, S. I. (2017). Contributory role of sex differences in the variations of gustatory function. Journal of Neuroscience Research, 95(1–2), 594–603. https://doi.org/10.1002/jnr.23819

Mazzola, L., Royet, J. P., Catenoix, H., Montavont, A., Isnard, J., & Mauguière, F. (2017). Gustatory and olfactory responses to stimulation of the human insula. Annals of Neurology, 82(3), 360–370. https://doi.org/10.1002/ana.25010

McKellar, C. E., Siwanowicz, I., Dickson, B. J., & Simpson, J. H. (2020). Controlling motor neurons of every muscle for fly proboscis reaching. eLife, 9, e54978. https://doi.org/10.7554/eLife.54978

Musser, J. M., Schippers, K. J., Nickel, M., Mizzon, G., Kohn, A. B., Pape, C., Ronchi, P., Papadopoulos, N., Tarashansky, A. J., Hammel, J. U., Wolf, F., Liang, C., Hernández-Plaza, A., Cantalapiedra, C. P., Achim, K., Schieber, N. L., Pan, L., Ruperti, F., Francis, W. R., Vargas, S., … Arendt, D. (2021). Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. Science (New York, N.Y.), 374(6568), 717–723. https://doi.org/10.1126/science.abj2949

National Institute for Deafness and Other Communication Disorders. (2017, May 12). NIDCD fact sheet: Taste and smell: Taste disorders. Retrieved from https://nidcd.nih.gov/health/taste-disorders

Nelson, G., Chandrashekar, J., Hoon, M. A., Feng, L., Zhao, G., Ryba, N. J., & Zuker, C. S. (2002). An amino-acid taste receptor. Nature, 416(6877), 199–202. https://doi.org/10.1038/nature726

Nguyen, Q. T., Beck Coburn, G. E., Valentino, A., Karabucak, B., & Tizzano, M. (2021). Mouse mandibular retromolar taste buds associated with a mucus salivary gland. Chemical Senses, 46, bjab019. https://doi.org/10.1093/chemse/bjab019

Ohmoto, M., Matsumoto, I., Misaka, T., & Abe, K. (2006). Taste receptor cells express voltage-dependent potassium channels in a cell age-specific manner. Chemical Senses, 31(8), 739–746. https://doi.org/10.1093/chemse/bjl016

Ohsu, T., Amino, Y., Nagasaki, H., Yamanaka, T., Takeshita, S., Hatanaka, T., Maruyama, Y., Miyamura, N., & Eto, Y. (2010). Involvement of the calcium-sensing receptor in human taste perception. The Journal of Biological Chemistry, 285(2), 1016–1022. https://doi.org/10.1074/jbc.M109.029165

Parma, V., Ohla, K., Veldhuizen, M. G., Niv, M. Y., Kelly, C. E., Bakke, A. J., Cooper, K. W., Bouysset, C., Pirastu, N., Dibattista, M., Kaur, R., Liuzza, M. T., Pepino, M. Y., Schöpf, V., Pereda-Loth, V., Olsson, S. B., Gerkin, R. C., Rohlfs Domínguez, P., Albayay, J., Farruggia, M. C., … Hayes, J. E. (2020). More than smell-COVID-19 is associated with severe impairment of smell, taste, and chemesthesis. Chemical Senses, 45(7), 609–622. https://doi.org/10.1093/chemse/bjaa041

Restrepo, E., Finger, T. E., & Silver, W. L. (2000). The neurobiology of taste and smell. United Kingdom: Wiley.

Rodriguez, Y. A., Roebber, J. K., Dvoryanchikov, G., Makhoul, V., Roper, S. D., & Chaudhari, N. (2021). "Tripartite synapses" in taste buds: A role for type I glial-like taste cells. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 41(48), 9860–9871. https://doi.org/10.1523/JNEUROSCI.1444-21.2021

Roebber, J. K., Roper, S. D., & Chaudhari, N. (2019). The role of the anion in salt (NaCl) detection by mouse taste buds. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 39(32), 6224–6232. https://doi.org/10.1523/JNEUROSCI.2367-18.2019

Romanov, R. A., Lasher, R. S., High, B., Savidge, L. E., Lawson, A., Rogachevskaja, O. A., Zhao, H., Rogachevsky, V. V., Bystrova, M. F., Churbanov, G. D., Adameyko, I., Harkany, T., Yang, R., Kidd, G. J., Marambaud, P., Kinnamon, J. C., Kolesnikov, S. S., & Finger, T. E. (2018). Chemical synapses without synaptic vesicles: Purinergic neurotransmission through a CALHM1 channel-mitochondrial signaling complex. Science Signaling, 11(529), eaao1815. https://doi.org/10.1126/scisignal.aao1815

Roper, S. D. (2013). Taste buds as peripheral chemosensory processors. Seminars in Cell & Developmental Biology, 24(1), 71–79. https://doi.org/10.1016/j.semcdb.2012.12.002

Roper, S. D. (2021). Chemical and electrical synaptic interactions among taste bud cells. Current Opinion in Physiology, 20, 118–125. https://doi.org/10.1016/j.cophys.2020.12.004

Roper, S. D., & Chaudhari, N. (2017). Taste buds: Cells, signals and synapses. Nature Reviews. Neuroscience, 18(8), 485–497. https://doi.org/10.1038/nrn.2017.68

San Gabriel, A., Uneyama, H., Maekawa, T., & Torii, K. (2009). The calcium-sensing receptor in taste tissue. Biochemical and Biophysical Research Communications, 378(3), 414–418. https://doi.org/10.1016/j.bbrc.2008.11.060

Sato, K., Pellegrino, M., Nakagawa, T., Nakagawa, T., Vosshall, L. B., & Touhara, K. (2008). Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature, 452(7190), 1002–1006. https://doi.org/10.1038/nature06850

Scott, K. (2018). Gustatory processing in Drosophila melanogaster. Annual Review of Entomology, 63, 15–30. https://doi.org/10.1146/annurev-ento-020117-043331

Sinclair, M. S., Perea-Martinez, I., Abouyared, M., St John, S. J., & Chaudhari, N. (2015). Oxytocin decreases sweet taste sensitivity in mice. Physiology & Behavior, 141, 103–110. https://doi.org/10.1016/j.physbeh.2014.12.048

Small, D. M., Zald, D. H., Jones-Gotman, M., Zatorre, R. J., Pardo, J. V., Frey, S., & Petrides, M. (1999). Human cortical gustatory areas: A review of functional neuroimaging data. Neuroreport, 10(1), 7–14. https://doi.org/10.1097/00001756-199901180-00002

Stańska, K., & Krzeski, A. (2016). The umami taste: From discovery to clinical use. Otolaryngologia Polska = The Polish Otolaryngology, 70(4), 10–15. https://doi.org/10.5604/00306657.1199991

Staszko, S. M., & Boughter, J. D. (2020). Taste pathways, representation and processing in the brain. In B. Fritzsch (Ed.), The Senses: A Comprehensive Reference (2nd ed., pp. 280–297). Elsevier. https://doi.org/10.1016/B978-0-12-809324-5.23891-1

Stratford, J. M., & Finger, T. E. (2011). Central representation of postingestive chemosensory cues in mice that lack the ability to taste. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31(25), 9101–9110. https://doi.org/10.1523/JNEUROSCI.0404-11.2011

Stratford, J. M., Larson, E. D., Yang, R., Salcedo, E., & Finger, T. E. (2017). 5-HT3A-driven green fluorescent protein delineates gustatory fibers innervating sour-responsive taste cells: A labeled line for sour taste?. The Journal of Comparative Neurology, 525(10), 2358–2375. https://doi.org/10.1002/cne.24209

Taruno, A., Nomura, K., Kusakizako, T., Ma, Z., Nureki, O., & Foskett, J. K. (2021). Taste transduction and channel synapses in taste buds. Pflugers Archiv: European Journal of Physiology, 473(1), 3–13. https://doi.org/10.1007/s00424-020-02464-4

Taruno, A., Vingtdeux, V., Ohmoto, M., Ma, Z., Dvoryanchikov, G., Li, A., Adrien, L., Zhao, H., Leung, S., Abernethy, M., Koppel, J., Davies, P., Civan, M. M., Chaudhari, N., Matsumoto, I., Hellekant, G., Tordoff, M. G., Marambaud, P., & Foskett, J. K. (2013). CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature, 495(7440), 223–226. https://doi.org/10.1038/nature11906

Teng, B., Wilson, C. E., Tu, Y. H., Joshi, N. R., Kinnamon, S. C., & Liman, E. R. (2019). Cellular and neural responses to sour stimuli require the proton channel Otop1. Current Biology: CB, 29(21), 3647–3656.e5. https://doi.org/10.1016/j.cub.2019.08.077

Turner, H. N., & Liman, E. R. (2022). The cellular and molecular basis of sour taste. Annual Review of Physiology, 84, 41–58. https://doi.org/10.1146/annurev-physiol-060121-041637

Vandenbeuch, A., Larson, E. D., Anderson, C. B., Smith, S. A., Ford, A. P., Finger, T. E., & Kinnamon, S. C. (2015). Postsynaptic P2X3-containing receptors in gustatory nerve fibres mediate responses to all taste qualities in mice. The Journal of Physiology, 593(5), 1113–1125. https://doi.org/10.1113/jphysiol.2014.281014

Vandenbeuch, A., & Kinnamon, S. C. (2016). Glutamate: Tastant and neuromodulator in taste buds. Advances in Nutrition (Bethesda, Md.), 7(4), 823S–7S. https://doi.org/10.3945/an.115.011304

van Giesen, L., Kilian, P. B., Allard, C. A. H., & Bellono, N. W. (2020). Molecular basis of chemotactile sensation in octopus. Cell, 183(3), 594–604.e14. https://doi.org/10.1016/j.cell.2020.09.008

Wang, Y., Zajac, A. L., Lei, W., Christensen, C. M., Margolskee, R. F., Bouysset, C., Golebiowski, J., Zhao, H., Fiorucci, S., & Jiang, P. (2019). Metal ions activate the human taste receptor TAS2R7. Chemical Senses, 44(5), 339–347. https://doi.org/10.1093/chemse/bjz024

Weir, E. M., Reed, D. R., Pepino, M. Y., Veldhuizen, M. G., & Hayes, J. E. (2022). Massively collaborative crowdsourced research on COVID-19 and the chemical senses: Insights and outcomes. Food Quality and Preference, 97, 104483. https://doi.org/10.1016/j.foodqual.2021.104483

Witt, M. (2019). Anatomy and development of the human taste system. Handbook of Clinical Neurology, 164, 147–171. https://doi.org/10.1016/B978-0-444-63855-7.00010-1

World Health Organization. (2022, July 26). Fact sheet about malaria. Retrieved from https://www.who.int/news-room/fact-sheets/detail/malaria

Wu, A., Dvoryanchikov, G., Pereira, E., Chaudhari, N., & Roper, S. D. (2015). Breadth of tuning in taste afferent neurons varies with stimulus strength. Nature Communications, 6, 8171. https://doi.org/10.1038/ncomms9171

Wu, W., Zhu, Q. G., Wang, W. Q., Grierson, D., & Yin, X. R. (2022). Molecular basis of the formation and removal of fruit astringency. Food Chemistry, 372, 131234. https://doi.org/10.1016/j.foodchem.2021.131234

Yarmolinsky, D. A., Zuker, C. S., & Ryba, N. J. (2009). Common sense about taste: From mammals to insects. Cell, 139(2), 234–244. https://doi.org/10.1016/j.cell.2009.10.001

Yang, R., Dzowo, Y. K., Wilson, C. E., Russell, R. L., Kidd, G. J., Salcedo, E., Lasher, R. S., Kinnamon, J. C., & Finger, T. E. (2020). Three-dimensional reconstructions of mouse circumvallate taste buds using serial blockface scanning electron microscopy: I. Cell types and the apical region of the taste bud. The Journal of Comparative Neurology, 528(5), 756–771. https://doi.org/10.1002/cne.24779

Yiannakas, A., & Rosenblum, K. (2017). The insula and taste learning. Frontiers in Molecular Neuroscience, 10, 335. https://doi.org/10.3389/fnmol.2017.00335

8.3 The Olfactory System

Driver, R. J., & Balakrishnan, C. N. (2021). Highly contiguous genomes improve the understanding of avian olfactory receptor repertoires. Integrative and Comparative Biology, 61(4), 1281–1290. https://doi.org/10.1093/icb/icab150

Buck, L., & Axel, R. (1991). A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell, 65(1), 175–187. https://doi.org/10.1016/0092-8674(91)90418-x

Kadohisa, M., & Wilson, D. A. (2006). Olfactory cortical adaptation facilitates detection of odors against background. Journal of Neurophysiology, 95(3), 1888–1896. https://doi.org/10.1152/jn.00812.2005

Liu, A., Savya, S., & Urban, N. N. (2016). Early odorant exposure increases the number of mitral and tufted cells associated with a single glomerulus. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 36(46), 11646–11653. https://doi.org/10.1523/JNEUROSCI.0654-16.2016

Malnic, B., Godfrey, P. A., & Buck, L. B. (2004). The human olfactory receptor gene family. Proceedings of the National Academy of Sciences of the United States of America, 101(8), 2584–2589. https://doi.org/10.1073/pnas.0307882100

Mansourian, S., & Stensmyr, M. C. (2015). The chemical ecology of the fly. Current Opinion in Neurobiology, 34, 95–102. https://doi.org/10.1016/j.conb.2015.02.006

Ronderos, D. S., Lin, C. C., Potter, C. J., & Smith, D. P. (2014). Farnesol-detecting olfactory neurons in Drosophila. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(11), 3959–3968. https://doi.org/10.1523/JNEUROSCI.4582-13.2014

Ruebenbauer, A., Schlyter, F., Hansson, B. S., Löfstedt, C., & Larsson, M. C. (2008). Genetic variability and robustness of host odor preference in Drosophila melanogaster. Current Biology: CB, 18(18), 1438–1443. https://doi.org/10.1016/j.cub.2008.08.062

Stensmyr, M. C., Dweck, H. K., Farhan, A., Ibba, I., Strutz, A., Mukunda, L., Linz, J., Grabe, V., Steck, K., Lavista-Llanos, S., Wicher, D., Sachse, S., Knaden, M., Becher, P. G., Seki, Y., & Hansson, B. S. (2012). A conserved dedicated olfactory circuit for detecting harmful microbes in Drosophila. Cell, 151(6), 1345–1357. https://doi.org/10.1016/j.cell.2012.09.046

Soucy, E. R., Albeanu, D. F., Fantana, A. L., Murthy, V. N., & Meister, M. (2009). Precision and diversity in an odor map on the olfactory bulb. Nature Neuroscience, 12(2), 210–220. https://doi.org/10.1038/nn.2262

Wedekind, C., Seebeck, T., Bettens, F., & Paepke, A. J. (1995). MHC-dependent mate preferences in humans. Proceedings. Biological Sciences, 260(1359), 245–249. https://doi.org/10.1098/rspb.1995.0087

Wicher, D., & Miazzi, F. (2021). Functional properties of insect olfactory receptors: Ionotropic receptors and odorant receptors. Cell and Tissue Research, 383(1), 7–19. https://doi.org/10.1007/s00441-020-03363-x

Wikelski, M., Quetting, M., Cheng, Y., Fiedler, W., Flack, A., Gagliardo, A., Salas, R., Zannoni, N., & Williams, J. (2021). Smell of green leaf volatiles attracts white storks to freshly cut meadows. Scientific Reports, 11(1), 12912. https://doi.org/10.1038/s41598-021-92073-7

Zhang, X., & Firestein, S. (2002). The olfactory receptor gene superfamily of the mouse. Nature Neuroscience, 5(2), 124–133. https://doi.org/10.1038/nn800

8.4 Chemethesis, Spices, and Solitary Chemosensory Cells

Adappa, N. D., Zhang, Z., Palmer, J. N., Kennedy, D. W., Doghramji, L., Lysenko, A., Reed, D. R., Scott, T., Zhao, N. W., Owens, D., Lee, R. J., & Cohen, N. A. (2014). The bitter taste receptor T2R38 is an independent risk factor for chronic rhinosinusitis requiring sinus surgery. International Forum of Allergy & Rhinology, 4(1), 3–7. https://doi.org/10.1002/alr.21253

Bandell, M., Macpherson, L. J., & Patapoutian, A. (2007). From chills to chilis: mechanisms for thermosensation and chemesthesis via thermoTRPs. Current Opinion in Neurobiology, 17(4), 490–497. https://doi.org/10.1016/j.conb.2007.07.014

Bautista, D. M., Movahed, P., Hinman, A., Axelsson, H. E., Sterner, O., Högestätt, E. D., Julius, D., Jordt, S. E., & Zygmunt, P. M. (2005). Pungent products from garlic activate the sensory ion channel TRPA1. Proceedings of the National Academy of Sciences of the United States of America, 102(34), 12248–12252. https://doi.org/10.1073/pnas.0505356102

Bautista, D. M., Sigal, Y. M., Milstein, A. D., Garrison, J. L., Zorn, J. A., Tsuruda, P. R., Nicoll, R. A., & Julius, D. (2008). Pungent agents from Szechuan peppers excite sensory neurons by inhibiting two-pore potassium channels. Nature Neuroscience, 11(7), 772–779. https://doi.org/10.1038/nn.2143

Bolliet, D., Hayes, J. E., & McDonald, S. T. (2016). Chemesthesis: Chemical touch in food and eating. John Wiley & Sons.

Deckmann, K., & Kummer, W. (2016). Chemosensory epithelial cells in the urethra: sentinels of the urinary tract. Histochemistry and Cell Biology, 146(6), 673–683. https://doi.org/10.1007/s00418-016-1504-x

Dong, H., Liu, J., Zhu, J., Zhou, Z., Tizzano, M., Peng, X., Zhou, X., Xu, X., & Zheng, X. (2022). Oral microbiota-host interaction mediated by taste receptors. Frontiers in Cellular and Infection Microbiology, 12, 802504. https://doi.org/10.3389/fcimb.2022.802504

Finger, T. E., Böttger, B., Hansen, A., Anderson, K. T., Alimohammadi, H., & Silver, W. L. (2003). Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proceedings of the National Academy of Sciences of the United States of America, 100(15), 8981–8986. https://doi.org/10.1073/pnas.1531172100

Green, B. G. (2012). Chemesthesis and the chemical senses as components of a "chemofensor complex". Chemical Senses, 37(3), 201–206. https://doi.org/10.1093/chemse/bjr119

Jordt, S. E., & Julius, D. (2002). Molecular basis for species-specific sensitivity to "hot" chili peppers. Cell, 108(3), 421–430. https://doi.org/10.1016/s0092-8674(02)00637-2

Kaufman, A. C., Colquitt, L., Ruckenstein, M. J., Bigelow, D. C., Eliades, S. J., Xiong, G., Lin, C., Reed, D. R., & Cohen, N. A. (2021). Bitter taste receptors and chronic otitis media. Otolaryngology–Head and Neck Surgery, 165(2), 290–299. https://doi.org/10.1177/0194599820984788

Kobayashi, K., Fukuoka, T., Obata, K., Yamanaka, H., Dai, Y., Tokunaga, A., & Noguchi, K. (2005). Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. The Journal of Comparative Neurology, 493(4), 596–606. https://doi.org/10.1002/cne.20794

Krasteva, G., Canning, B. J., Hartmann, P., Veres, T. Z., Papadakis, T., Mühlfeld, C., Schliecker, K., Tallini, Y. N., Braun, A., Hackstein, H., Baal, N., Weihe, E., Schütz, B., Kotlikoff, M., Ibanez-Tallon, I., & Kummer, W. (2011). Cholinergic chemosensory cells in the trachea regulate breathing. Proceedings of the National Academy of Sciences of the United States of America, 108(23), 9478–9483. https://doi.org/10.1073/pnas.1019418108

McDonald, S. T., Bolliet, D. A., & Hayes, J. E. (Eds.). (2016). Chemesthesis: Chemical touch in food and eating. Wiley-Blackwell.

McKemy, D. D., Neuhausser, W. M., & Julius, D. (2002). Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature, 416(6876), 52–58. https://doi.org/10.1038/nature719

O'Brien, C. P., Gastfriend, D. R., Forman, R. F., Schweizer, E., & Pettinati, H. M. (2011). Long-term opioid blockade and hedonic response: preliminary data from two open-label extension studies with extended-release naltrexone. The American Journal on Addictions, 20(2), 106–112. https://doi.org/10.1111/j.1521-0391.2010.00107.x

Perniss, A., Liu, S., Boonen, B., Keshavarz, M., Ruppert, A. L., Timm, T., Pfeil, U., Soultanova, A., Kusumakshi, S., Delventhal, L., Aydin, Ö., Pyrski, M., Deckmann, K., Hain, T., Schmidt, N., Ewers, C., Günther, A., Lochnit, G., Chubanov, V., Gudermann, T., ... Kummer, W. (2020). Chemosensory cell-derived acetylcholine drives tracheal mucociliary clearance in response to virulence-associated formyl peptides. Immunity, 52(4), 683–699.e11. https://doi.org/10.1016/j.immuni.2020.03.005

Prescott, J., & Stevenson, R. J. (1995). Pungency in food perception and preference. Food Reviews International, 11(4), 665–698. https://doi.org/10.1080/87559129509541064

Rozin, P., Ebert, L., & Schull, J. (1982). Some like it hot: a temporal analysis of hedonic responses to chili pepper. Appetite, 3(1), 13–22. https://doi.org/10.1016/s0195-6663(82)80033-0

Saunders, C. J., Christensen, M., Finger, T. E., & Tizzano, M. (2014). Cholinergic neurotransmission links solitary chemosensory cells to nasal inflammation. Proceedings of the National Academy of Sciences of the United States of America, 111(16), 6075–6080. https://doi.org/10.1073/pnas.1402251111

Tewksbury, J. J., & Nabhan, G. P. (2001). Seed dispersal. Directed deterrence by capsaicin in chilies. Nature, 412(6845), 403–404. https://doi.org/10.1038/35086653

Tizard, I., & Skow, L. (2021). The olfactory system: the remote-sensing arm of the immune system. Animal Health Research Reviews, 22(1), 14–25. https://doi.org/10.1017/S1466252320000262

Tizzano, M., & Finger, T. E. (2013). Chemosensors in the nose: guardians of the airways. Physiology (Bethesda, Md.), 28(1), 51–60. https://doi.org/10.1152/physiol.00035.2012

Wang, Y. Y., Chang, R. B., Allgood, S. D., Silver, W. L., & Liman, E. R. (2011). A TRPA1-dependent mechanism for the pungent sensation of weak acids. The Journal of General Physiology, 137(6), 493–505. https://doi.org/10.1085/jgp.201110615

Winter, Z., Gruschwitz, P., Eger, S., Touska, F., & Zimmermann, K. (2017). Cold temperature encoding by cutaneous TRPA1 and TRPM8-carrying fibers in the mouse. Frontiers in Molecular Neuroscience, 10, 209. https://doi.org/10.3389/fnmol.2017.00209

Wiederhold, S., Papadakis, T., Chubanov, V., Gudermann, T., Krasteva-Christ, G., & Kummer, W. (2015). A novel cholinergic epithelial cell with chemosensory traits in the murine conjunctiva. International Immunopharmacology, 29(1), 45–50. https://doi.org/10.1016/j.intimp.2015.06.027

Xi, R., McLaughlin, S., Salcedo, E., & Tizzano, M. (2023). The nasal solitary chemosensory cell signaling pathway triggers mouse avoidance behavior to inhaled nebulized irritants. eNeuro, 10(4), ENEURO.0245-22.2023. https://doi.org/10.1523/ENEURO.0245-22.2023

8.5 Influences That Shape Perception of Smell and Flavor

Araneda, R. C., & Firestein, S. (2004). The scents of androstenone in humans. The Journal of Physiology, 554(Pt 1), 1. https://doi.org/10.1113/jphysiol.2003.057075

Clydesdale, F. M. (1993). Color as a factor in food choice. Critical Reviews in Food Science and Nutrition, 33(1), 83–101. https://doi.org/10.1080/10408399309527614

Clydesdale, F. M. (1994). Changes in color and flavor and their effect on sensory perception in the elderly. Nutrition Reviews, 52(8 Pt 2), S19–S20. https://doi.org/10.1111/j.1753-4887.1994.tb01441.x

Dacremont, C., Colas, B., & Sauvageot, F. (1991). Contribution of air- and bone-conduction to the creation of sounds perceived during sensory evaluation of foods. Journal of Texture Studies, 22(4), 443–456. https://doi.org/10.1111/j.1745-4603.1991.tb00503.x

Douglas, J. E., Saunders, C. J., Reed, D. R., & Cohen, N. A. (2016). A role for airway taste receptor modulation in the treatment of upper respiratory infections. Expert Review of Respiratory Medicine, 10(2), 157–170. https://doi.org/10.1586/17476348.2016.1135742

Koza, B. J., Cilmi, A., Dolese, M., & Zellner, D. A. (2005). Color enhances orthonasal olfactory intensity and reduces retronasal olfactory intensity. Chemical Senses, 30(8), 643–649. https://doi.org/10.1093/chemse/bji057

Pelchat, M. L., Bykowski, C., Duke, F. F., & Reed, D. R. (2011). Excretion and perception of a characteristic odor in urine after asparagus ingestion: a psychophysical and genetic study. Chemical Senses, 36(1), 9–17. https://doi.org/10.1093/chemse/bjq081

Roudaut, G., Dacremont, C., Vallès Pàmies, B., Colas, B., & Le Meste, M. (2002). Crispness: A critical review on sensory and material science approaches. Trends in Food Science & Technology, 13(6-7), 217–227. https://doi.org/10.1016/s0924-2244(02)00139-5

Selway, N., & Stokes, J. R. (2014). Soft materials deformation, flow, and lubrication between compliant substrates: impact on flow behavior, mouthfeel, stability, and flavor. Annual Review of Food Science and Technology, 5, 373–393. https://doi.org/10.1146/annurev-food-030212-182657

Simons, C. T., Klein, A. H., & Carstens, E. (2019). Chemogenic subqualities of mouthfeel. Chemical Senses, 44(5), 281–288. https://doi.org/10.1093/chemse/bjz016

Spence, C. (2021). What's the story with blue steak? On the unexpected popularity of blue foods. Frontiers in Psychology, 12, 638703. https://doi.org/10.3389/fpsyg.2021.638703

Tran, H. T. T., Stetter, R., Herz, C., Spöttel, J., Krell, M., Hanschen, F. S., Schreiner, M., Rohn, S., Behrens, M., & Lamy, E. (2021). Allyl isothiocyanate: A TAS2R38 receptor-dependent immune modulator at the interface between personalized medicine and nutrition. Frontiers in Immunology, 12, 669005. https://doi.org/10.3389/fimmu.2021.669005

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
Citation information

© Oct 30, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.