Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Introduction

Feyissa A.M., Carrano A., Wang X., Allen M., Ertekin-Taner N., Dickson D.W., Jentoft M.E., Rosenfeld S.S., Tatum W.O., Ritaccio A.L., Guerrero-Cázares H., &Quiñones-Hinojosa A. (2021). Analysis of intraoperative human brain tissue transcriptome reveals putative risk genes and altered molecular pathways in glioma-related seizures. Epilepsy Research, 173, 106618. https://doi.org/10.1016/j.eplepsyres.2021.106618

Quiñones-Hinojosa, A. (2011). Becoming Dr. Q: My journey from migrant farm worker to brain surgeon. University of California Press.

2.1 Neural Communication

Anctil, M. (2015). Dawn of the neuron: The early struggles to trace the origin of nervous systems. McGill-Queen’s University Press.

Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proceedings of the National Academy of Sciences, 109,(Supplement 1), 10661–10668. https://doi.org/10.1073/pnas.1201895109

Pakkenberg, B., Pelvig, D., Marner, L., Bundgaard, M.J., Gundersen, H.J.G., Nyengaard, J.R., & Regeur, L. (2003). Aging and the human neocortex. Experimental Gerontology, 38(1), 95–99. https://doi.org/10.1016/S0531-5565(02)00151-1

Testa-Silva, G., Verhoog, M.B., Linaro, D., de Kock, C.P.J., Baayen, J.C., Meredith, R.M., De Zeeuw, C.I., Giugliano, M., & Mansvelder, H.D. (2014). High bandwidth synaptic communication and frequency tracking in human neocortex. PLoS Biology, 12, (11), e1002007. https://doi.org/10.1371/journal.pbio.1002007

Todnem, K., Knudsen, G., Riise, T., Nyland, H., & Aarli, J.A. (1989). The non-linear relationship between nerve conduction velocity and skin temperature. Journal of Neurology, Neurosurgery and Psychiatry, 52,(4), 497–501. https://doi.org/10.1136/jnnp.52.4.497

2.2 Neural Circuits

Balasubramanian, V. (2021.) Brain power. Proceedings of the National Academy of Sciences, 118(32), e2107022118. https://doi.org/10.1073/pnas.2107022118

Berger, T.W., Hampson, R.E., Song, D., Goonawardena, A., Marmarelis, V.Z., & Deadwyler, S.A. (2011). A cortical neural prosthesis for restoring and enhancing memory. Journal of Neural Engineering, 8(4), 046017. https://doi.org/10.1088/1741-2560/8/4/046017

Berger, T.W., Song, D., Chan, R.H.M., Marmarelis, V.Z., LaCoss, J., Wills, J., Hampson, R.E., Deadwyler, S.A., & Granacki, J.J. (2012). A hippocampal cognitive prosthesis: Multi-input, multi-output nonlinear modeling and VLSI implementation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(2), 198–211. https://doi.org/10.1109/TNSRE.2012.2189133

Brown, G.D. (1998). Nonassociative learning processes affecting swimming probability in the seaslug Tritonia diomedea: habituation, sensitization and inhibition. Behavioural Brain Research, 95(2), 151–165. https://doi.org/10.1016/S0166-4328(98)00072-2

Calin-Jageman, R.J., Tunstall, M.J., Mensh, B.D., Katz, P.S., & Frost, W.N. (2007). Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. Journal of Neurophysiology, 98(4), 2382–2398. https://doi.org/10.1152/jn.00572.2007

Deadwyler, S.A., Berger, T.W., Sweatt, A.J., Song, D., Chan, R.H.M., Opris, I., Gerhardt, G.A., Marmarelis, V.Z., & Hampson, R.E. (2013). Donor/recipient enhancement of memory in rat hippocampus. Frontiers in Systems Neuroscience, 7. https://doi.org/10.3389/fnsys.2013.00120

Getting, P.A. (1983). Mechanisms of pattern generation underlying swimming in Tritonia. II. Network reconstruction. Journal of Neurophysiology,, 49(4), 1017–1035. https://doi.org/10.1152/jn.1983.49.4.1017

Hampson, R.E., Song, D., Robinson, B.S., Fetterhoff, D., Dakos, A.S., Roeder, B.M., She, X., Wicks, R.T., Witcher, M.R., Couture, D.E., Laxton, A.W., Munger-Clary, H., Popli, G., Sollman, M.J., Whitlow, C.T., Marmarelis, V.Z., Berger, T.W., & Deadwyler, S.A. (2018). Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall. Journal of Neural Engineering, 15(3), 036014. https://doi.org/10.1088/1741-2552/aaaed7

Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proceedings of the National Academy of Sciences, 109(Supplement 1), 10661–10668. https://doi.org/10.1073/pnas.1201895109

Hoppe, T. (1998). An evaluation of the role of synaptic depression at afferent synapses in habituation of the escape swim response of Tritonia diomedea. Master's thesis,The University of Texas Health Science Center at Houston.

Katz, P.S., & Frost, W.N. (1997). Removal of spike frequency adaptation via neuromodulation intrinsic to the Tritonia escape swim central pattern generator. Journal of Neuroscience, 17,(20), 7703–7713. https://doi.org/10.1523/jneurosci.17-20-07703.1997

Willows, A.O.D., & Hoyle, G. (1969). Neuronal network triggering a fixed action pattern. Science, 166(3912), 1549–1551. https://doi.org/10.1126/science.166.3912.1549

2.3 Principles of Bioelectricity

Erecińska, M., & Silver, I.A. (1994). Ions and energy in mammalian brain. Progress in Neurobiology, 43(1), 37–71. https://doi.org/10.1016/0301-0082(94)90015-9

Kralj, J.M., Douglass, A.D., Hochbaum, D.R., Maclaurin, D., & Cohen, A.E. (2012). Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nature Methods, 9(1), 90–95. https://doi.org/10.1038/nmeth.1782

2.4 Mechanisms of Neural Signaling

Eyal, G., Verhoog, M.B., Testa-Silva, G., Deitcher, Y., Piccione, R.B., DeFelipe, J., de Kock, C.P.J., Mansvelder, H.D., & Segev, I. (2018). Human cortical pyramidal neurons: From spines to spikes via models. Frontiers in Cellular Neuroscience, 12, 181. https://doi.org/10.3389/fncel.2018.00181

Lennie, P. (2003). The cost of cortical computation. Current Biology, 13(6), 493–497. https://doi.org/10.1016/S0960-9822(03)00135-0

Viscardi, L.H., Imparato, D.O., Bortolini, M.C., & Dalmolin, R.J.S. (2021). Ionotropic receptors as a driving force behind human synapse establishment. Molecular Biology and Evolution, 38(3), 735–744. https://doi.org/10.1093/molbev/msaa252

2.5 Our Deep but Still Incomplete Understanding of Neural Signaling

Allen, N.J., & Lyons, D.A. (2018). Glia as architects of central nervous system formation and function. Science, 362(6411), 181–185. https://doi.org/10.1126/science.aat0473

Bakken, T.E., Jorstad, N.L., Hu, Q., Lake, B.B., Kalmbach, B.E., Crow, M., Hodge, R.D., Krienen, F.M., Sorensen, S.A., Eggermont, J., Yao, Z., Aevermann, B.D., Aldridge, A.I., Bartlett, A., Bertagnolli, D., Casper, T., Castanon, R.G., Crichton, K., Dalley, R., ... Lein, E.S. (2021). Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 598 111–119. https://doi.org/10.1038/s41586-021-03465-8

Hirose, S. (2014). Mutant GABAA receptor subunits in genetic (idiopathic) epilepsy. Progress in Brain Research, 213, 55–85. https://doi.org/10.1016/B978-0-444-63326-2.00003-X

Marder, E., & Goaillard, J.-M. (2006). Variability, compensation and homeostasis in neuron and network function. Nature Reviews. Neuroscience, 7(7), 563–574. https://doi.org/10.1038/nrn1949

Miura, D.S., & Rosen, M.R. (1978). The effects of ouabain on the transmembrane potentials and intracellular potassium activity of canine cardiac Purkinje fibers. Circulation Research, 42(3), 333–338. https://doi.org/10.1161/01.RES.42.3.333

Noguchi, T., & Arakawa, O. (2008). Tetrodotoxin – distribution and accumulation in aquatic organisms, and cases of human intoxication. Marine Drugs, 6(2), 220–242. https://doi.org/10.3390/md20080011

Stuart, G., Spruston, N., Sakmann, B., & Häusser, M. (1997). Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends in Neurosciences, 20(3), 125–131. https://doi.org/10.1016/S0166-2236(96)10075-8

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution-NonCommercial-ShareAlike License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
Citation information

© Nov 20, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.