Introduction
Feyissa A.M., Carrano A., Wang X., Allen M., Ertekin-Taner N., Dickson D.W., Jentoft M.E., Rosenfeld S.S., Tatum W.O., Ritaccio A.L., Guerrero-Cázares H., &Quiñones-Hinojosa A. (2021). Analysis of intraoperative human brain tissue transcriptome reveals putative risk genes and altered molecular pathways in glioma-related seizures. Epilepsy Research, 173, 106618. https://doi.org/10.1016/j.eplepsyres.2021.106618
Quiñones-Hinojosa, A. (2011). Becoming Dr. Q: My journey from migrant farm worker to brain surgeon. University of California Press.
2.1 Neural Communication
Anctil, M. (2015). Dawn of the neuron: The early struggles to trace the origin of nervous systems. McGill-Queen’s University Press.
Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proceedings of the National Academy of Sciences, 109,(Supplement 1), 10661–10668. https://doi.org/10.1073/pnas.1201895109
Pakkenberg, B., Pelvig, D., Marner, L., Bundgaard, M.J., Gundersen, H.J.G., Nyengaard, J.R., & Regeur, L. (2003). Aging and the human neocortex. Experimental Gerontology, 38(1), 95–99. https://doi.org/10.1016/S0531-5565(02)00151-1
Testa-Silva, G., Verhoog, M.B., Linaro, D., de Kock, C.P.J., Baayen, J.C., Meredith, R.M., De Zeeuw, C.I., Giugliano, M., & Mansvelder, H.D. (2014). High bandwidth synaptic communication and frequency tracking in human neocortex. PLoS Biology, 12, (11), e1002007. https://doi.org/10.1371/journal.pbio.1002007
Todnem, K., Knudsen, G., Riise, T., Nyland, H., & Aarli, J.A. (1989). The non-linear relationship between nerve conduction velocity and skin temperature. Journal of Neurology, Neurosurgery and Psychiatry, 52,(4), 497–501. https://doi.org/10.1136/jnnp.52.4.497
2.2 Neural Circuits
Balasubramanian, V. (2021.) Brain power. Proceedings of the National Academy of Sciences, 118(32), e2107022118. https://doi.org/10.1073/pnas.2107022118
Berger, T.W., Hampson, R.E., Song, D., Goonawardena, A., Marmarelis, V.Z., & Deadwyler, S.A. (2011). A cortical neural prosthesis for restoring and enhancing memory. Journal of Neural Engineering, 8(4), 046017. https://doi.org/10.1088/1741-2560/8/4/046017
Berger, T.W., Song, D., Chan, R.H.M., Marmarelis, V.Z., LaCoss, J., Wills, J., Hampson, R.E., Deadwyler, S.A., & Granacki, J.J. (2012). A hippocampal cognitive prosthesis: Multi-input, multi-output nonlinear modeling and VLSI implementation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20(2), 198–211. https://doi.org/10.1109/TNSRE.2012.2189133
Brown, G.D. (1998). Nonassociative learning processes affecting swimming probability in the seaslug Tritonia diomedea: habituation, sensitization and inhibition. Behavioural Brain Research, 95(2), 151–165. https://doi.org/10.1016/S0166-4328(98)00072-2
Calin-Jageman, R.J., Tunstall, M.J., Mensh, B.D., Katz, P.S., & Frost, W.N. (2007). Parameter space analysis suggests multi-site plasticity contributes to motor pattern initiation in Tritonia. Journal of Neurophysiology, 98(4), 2382–2398. https://doi.org/10.1152/jn.00572.2007
Deadwyler, S.A., Berger, T.W., Sweatt, A.J., Song, D., Chan, R.H.M., Opris, I., Gerhardt, G.A., Marmarelis, V.Z., & Hampson, R.E. (2013). Donor/recipient enhancement of memory in rat hippocampus. Frontiers in Systems Neuroscience, 7. https://doi.org/10.3389/fnsys.2013.00120
Getting, P.A. (1983). Mechanisms of pattern generation underlying swimming in Tritonia. II. Network reconstruction. Journal of Neurophysiology,, 49(4), 1017–1035. https://doi.org/10.1152/jn.1983.49.4.1017
Hampson, R.E., Song, D., Robinson, B.S., Fetterhoff, D., Dakos, A.S., Roeder, B.M., She, X., Wicks, R.T., Witcher, M.R., Couture, D.E., Laxton, A.W., Munger-Clary, H., Popli, G., Sollman, M.J., Whitlow, C.T., Marmarelis, V.Z., Berger, T.W., & Deadwyler, S.A. (2018). Developing a hippocampal neural prosthetic to facilitate human memory encoding and recall. Journal of Neural Engineering, 15(3), 036014. https://doi.org/10.1088/1741-2552/aaaed7
Herculano-Houzel, S. (2012). The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost. Proceedings of the National Academy of Sciences, 109(Supplement 1), 10661–10668. https://doi.org/10.1073/pnas.1201895109
Hoppe, T. (1998). An evaluation of the role of synaptic depression at afferent synapses in habituation of the escape swim response of Tritonia diomedea. Master's thesis,The University of Texas Health Science Center at Houston.
Katz, P.S., & Frost, W.N. (1997). Removal of spike frequency adaptation via neuromodulation intrinsic to the Tritonia escape swim central pattern generator. Journal of Neuroscience, 17,(20), 7703–7713. https://doi.org/10.1523/jneurosci.17-20-07703.1997
Willows, A.O.D., & Hoyle, G. (1969). Neuronal network triggering a fixed action pattern. Science, 166(3912), 1549–1551. https://doi.org/10.1126/science.166.3912.1549
2.3 Principles of Bioelectricity
Erecińska, M., & Silver, I.A. (1994). Ions and energy in mammalian brain. Progress in Neurobiology, 43(1), 37–71. https://doi.org/10.1016/0301-0082(94)90015-9
Kralj, J.M., Douglass, A.D., Hochbaum, D.R., Maclaurin, D., & Cohen, A.E. (2012). Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nature Methods, 9(1), 90–95. https://doi.org/10.1038/nmeth.1782
2.4 Mechanisms of Neural Signaling
Eyal, G., Verhoog, M.B., Testa-Silva, G., Deitcher, Y., Piccione, R.B., DeFelipe, J., de Kock, C.P.J., Mansvelder, H.D., & Segev, I. (2018). Human cortical pyramidal neurons: From spines to spikes via models. Frontiers in Cellular Neuroscience, 12, 181. https://doi.org/10.3389/fncel.2018.00181
Lennie, P. (2003). The cost of cortical computation. Current Biology, 13(6), 493–497. https://doi.org/10.1016/S0960-9822(03)00135-0
Viscardi, L.H., Imparato, D.O., Bortolini, M.C., & Dalmolin, R.J.S. (2021). Ionotropic receptors as a driving force behind human synapse establishment. Molecular Biology and Evolution, 38(3), 735–744. https://doi.org/10.1093/molbev/msaa252
2.5 Our Deep but Still Incomplete Understanding of Neural Signaling
Allen, N.J., & Lyons, D.A. (2018). Glia as architects of central nervous system formation and function. Science, 362(6411), 181–185. https://doi.org/10.1126/science.aat0473
Bakken, T.E., Jorstad, N.L., Hu, Q., Lake, B.B., Kalmbach, B.E., Crow, M., Hodge, R.D., Krienen, F.M., Sorensen, S.A., Eggermont, J., Yao, Z., Aevermann, B.D., Aldridge, A.I., Bartlett, A., Bertagnolli, D., Casper, T., Castanon, R.G., Crichton, K., Dalley, R., ... Lein, E.S. (2021). Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 598 111–119. https://doi.org/10.1038/s41586-021-03465-8
Hirose, S. (2014). Mutant GABAA receptor subunits in genetic (idiopathic) epilepsy. Progress in Brain Research, 213, 55–85. https://doi.org/10.1016/B978-0-444-63326-2.00003-X
Marder, E., & Goaillard, J.-M. (2006). Variability, compensation and homeostasis in neuron and network function. Nature Reviews. Neuroscience, 7(7), 563–574. https://doi.org/10.1038/nrn1949
Miura, D.S., & Rosen, M.R. (1978). The effects of ouabain on the transmembrane potentials and intracellular potassium activity of canine cardiac Purkinje fibers. Circulation Research, 42(3), 333–338. https://doi.org/10.1161/01.RES.42.3.333
Noguchi, T., & Arakawa, O. (2008). Tetrodotoxin – distribution and accumulation in aquatic organisms, and cases of human intoxication. Marine Drugs, 6(2), 220–242. https://doi.org/10.3390/md20080011
Stuart, G., Spruston, N., Sakmann, B., & Häusser, M. (1997). Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends in Neurosciences, 20(3), 125–131. https://doi.org/10.1016/S0166-2236(96)10075-8