Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

11.1 Understanding Sexual Reproduction and Sexual Dimorphism

Aloufi, N., Heinrich, A., Marshall, K., & Kluk, K. (2023). Sex differences and the effect of female sex hormones on auditory function: A systematic review. Frontiers in Human Neuroscience, 17(April). https://doi.org/10.3389/fnhum.2023.1077409.

Arcand, M., Bilodeau-Houle, A., Juster, R.-P., & Marin, M.-F. (2023). Sex and gender role differences on stress, depression, and anxiety symptoms in response to the COVID-19 pandemic over time. Frontiers in Psychology, 14(May), 1166154. https://doi.org/10.3389/fpsyg.2023.1166154.

Bagemihl, B. (1999). Biological exuberance: Animal homosexuality and natural diversity. New York: St. Martin’s Press. http://archive.org/details/biologicalexuber00bage.

Bateman, A. J. (1948). Intra-sexual selection in Drosophila . Heredity, 2(Pt. 3), 349–368. https://doi.org/10.1038/hdy.1948.21.

Baum, M. J., & Keverne, E. B. (2002). Sex difference in attraction thresholds for volatile odors from male and estrous female mouse urine. Hormones and Behavior , 41(2), 213–219. https://doi.org/10.1006/hbeh.2001.1749.

Bergsten, J., & Miller, K. B. (2007). Phylogeny of diving beetles reveals a coevolutionary arms race between the sexes. PloS One, 2(6), e522. https://doi.org/10.1371/journal.pone.0000522.

Borgia, G. (1985). Bower quality, number of decorations and mating success of male satin bowerbirds (Ptilonorhynchus violaceus): An experimental analysis. Animal Behaviour, 33(1), 266–271. https://doi.org/10.1016/S0003-3472(85)80140-8.

Boyd, A., Van de Velde, S., Vilagut, G., de Graaf, R., O׳Neill, S., Florescu, S., Alonso, J., & Kovess-Masfety, V. (2015). Gender differences in mental disorders and suicidality in Europe: Results from a large cross-sectional population-based study. Journal of Affective Disorders, 173(March), 245–254. https://doi.org/10.1016/j.jad.2014.11.002.

Casaletto, K. B., Nichols, E., Aslanyan, V., Simone, S. M., Rabin, J. S., La Joie, R., Brickman, A. M., et al. (2022). Sex-specific effects of microglial activation on Alzheimer’s disease proteinopathy in older adults. Brain: A Journal of Neurology , 145(10), 3536–3545. https://doi.org/10.1093/brain/awac257.

Català-Senent, J. F., Andreu, Z., Hidalgo, M. R., Soler-Sáez, I., Roig, F. J., Yanguas-Casás, N., Neva-Alejo, A., et al. (2023). A deep transcriptome meta-analysis reveals sex differences in multiple sclerosis. Neurobiology of Disease, 181(June), 106113. https://doi.org/10.1016/j.nbd.2023.106113.

Clive, J., Flintham, E., & Savolainen, V. (2023). Same-sex sociosexual behaviour is widespread and heritable in male rhesus macaques. Nature Ecology & Evolution, 7(8), 1287–1301. https://doi.org/10.1038/s41559-023-02111-y.

Clutton-Brock, T. (2007). Sexual selection in males and females. Science, 318(5858), 1882–1885. https://doi.org/10.1126/science.1133311.

Czárán, T. L., & Hoekstra, R. F. (2004). Evolution of sexual asymmetry. BMC Evolutionary Biology, 4(1), 34. https://doi.org/10.1186/1471-2148-4-34.

Dalla, C., Antoniou, K., Kokras, N., Drossopoulou, G., Papathanasiou, G., Bekris, S., Daskas, S., & Papadopoulou-Daifoti, Z. (2008). Sex differences in the effects of two stress paradigms on dopaminergic neurotransmission. Physiology & Behavior, 93(3), 595–605. https://doi.org/10.1016/j.physbeh.2007.10.020.

Darwin, C., Bonner, J. T., & May, R. M. (1981). The descent of man, and selection in relation to sex. REV-Revised. Princeton University Press. https://www.jstor.org/stable/j.ctt19zbz6c.

Drossopoulou, G., Antoniou, K., Kitraki, E., Papathanasiou, G., Papalexi, E., Dalla, C., & Papadopoulou-Daifoti, Z. (2004). Sex differences in behavioral, neurochemical and neuroendocrine effects induced by the forced swim test in rats. Neuroscience , 126(4), 849–857. https://doi.org/10.1016/j.neuroscience.2004.04.044.

Duque-Wilckens, N., Steinman, M. Q., Busnelli, M., Chini, B., Yokoyama, S., Pham, M., Laredo, S. A., et al. (2018). Oxytocin receptors in the anteromedial bed nucleus of the stria terminalis promote stress-induced social avoidance in female California mice. Biological Psychiatry, 83(3), 203–213. https://doi.org/10.1016/j.biopsych.2017.08.024.

Durbeej, N., Sörman, K., Norén Selinus, E., Lundström, S., Lichtenstein, P., Hellner, C., & Halldner, L. (2019). Trends in childhood and adolescent internalizing symptoms: Results from Swedish population based twin cohorts. BMC Psychology , 7(1), 50. https://doi.org/10.1186/s40359-019-0326-8.

Ellis, B. H., Fisher, P. A., & Zaharie, S. (2004). Predictors of disruptive behavior, developmental delays, anxiety, and affective symptomatology among institutionally reared Romanian children. Journal of the American Academy of Child and Adolescent Psychiatry, 43(10), 1283–1292. https://doi.org/10.1097/01.chi.0000136562.24085.160.

Emlen, S. T., & Wrege, P. H. (2004). Division of labour in parental care behaviour of a sex-role-reversed shorebird, the wattled jacana. Animal Behaviour , 68(4), 847–855. https://doi.org/10.1016/j.anbehav.2003.08.034.

Gómez, J. M., Gónzalez-Megías, A., & Verdú, M. (2023). The evolution of same-sex sexual behaviour in mammals. Nature Communications, 14(1), 5719. https://doi.org/10.1038/s41467-023-41290-x.

Goymann, W., East, M. L., & Hofer, H. (2001). Androgens and the role of female ‘hyperaggressiveness’ in spotted hyenas (Crocuta crocuta). Hormones and Behavior, 39(1), 83–92. https://doi.org/10.1006/hbeh.2000.1634.

Hodes, G. E., Pfau, M. L., Purushothaman, I., Ahn, H. F., Golden, S. A., Christoffel, D. J., Magida, J., et al. (2015). Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 35(50), 16362–16376. https://doi.org/10.1523/JNEUROSCI.1392-15.2015.

Kelly, M. M., Tyrka, A. R., Anderson, G. M., Price, L. H., & Carpenter, L. L. (2008). Sex differences in emotional and physiological responses to the Trier social stress test. Journal of Behavior Therapy and Experimental Psychiatry, 39(1), 87–98. https://doi.org/10.1016/j.jbtep.2007.02.003.

Kessler, R. C., Petukhova, M., Sampson, N. A., Zaslavsky, A. M., & Wittchen, H.-U. (2012). Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. International Journal of Methods in Psychiatric Research, 21(3), 169–184. https://doi.org/10.1002/mpr.1359.

Kirschbaum, C., Wüst, S., & Hellhammer, D. (1992). Consistent sex differences in cortisol responses to psychological stress. Psychosomatic Medicine, 54(6), 648–657. https://doi.org/10.1097/00006842-199211000-00004.

Laredo, S. A., Steinman, M. Q., Robles, C. F., Ferrer, E., Ragen, B. J., & Trainor, B. C. (2015). Effects of defeat stress on behavioral flexibility in males and females: Modulation by the mu-opioid receptor. The European Journal of Neuroscience , 41(4), 434–441. https://doi.org/10.1111/ejn.12824.

Le Boeuf, B. J. (1974). Male-male competition and reproductive success in elephant seals. American Zoologist, 14(1), 163–176. https://doi.org/10.1093/icb/14.1.163.

Lighthall, N. R., Mather, M., & Gorlick, M. A. (2009). Acute stress increases sex differences in risk seeking in the balloon analogue risk task. PloS One, 4(7), e6002. https://doi.org/10.1371/journal.pone.0006002.

Michod, R. E., & Gayley, T. W. (1992). Masking of mutations and the evolution of sex. The American Naturalist, 139(4), 706–734.

Mogil, J. S. (2012). Sex differences in pain and pain inhibition: Multiple explanations of a controversial phenomenon. Nature Reviews Neuroscience, 13(12), 859–866. https://doi.org/10.1038/nrn3360.

Nickels, N., Kubicki, K., & Maestripieri, D. (2017). Sex differences in the effects of psychosocial stress on cooperative and prosocial behavior: Evidence for ‘flight or fight’ in males and ‘tend and befriend’ in females. Adaptive Human Behavior and Physiology, 2(3), 171–183. https://doi.org/10.1007/s40750-017-0062-3.

Nielsen, M. W., Stefanick, M. L., Peragine, D., Neilands, T. B., Ioannidis, J. P. A., Pilote, L., Prochaska, J. J., et al. (2021). Gender-related variables for health research. Biology of Sex Differences, 12(1), 23. https://doi.org/10.1186/s13293-021-00366-3.

Ohla, K., & Lundström, J. N. (2013). Sex differences in chemosensation: Sensory or emotional? Frontiers in Human Neuroscience, 7(September). https://doi.org/10.3389/fnhum.2013.00607.

Orsini, C. A., Blaes, S. L., Hernandez, C. M., Betzhold, S. M., Perera, H., Wheeler, A.-R., Ten Eyck, T. W., Garman, T. S., Bizon, J. L., & Setlow, B. (2021). Regulation of risky decision making by gonadal hormones in males and females. Neuropsychopharmacology, 46(3), 603–613. https://doi.org/10.1038/s41386-020-00827-0.

Osborne, N. R., & Davis, K. D. (2022). Sex and gender differences in pain. International Review of Neurobiology, 164, 277–307. https://doi.org/10.1016/bs.irn.2022.06.013.

Padkapayeva, K., Gilbert-Ouimet, M., Bielecky, A., Ibrahim, S., Mustard, C., Brisson, C., & Smith, P. (2018). Gender/sex differences in the relationship between psychosocial work exposures and work and life stress. Annals of Work Exposures and Health, 62(4), 416–425. https://doi.org/10.1093/annweh/wxy014.

Pedersen, K. E., Rosenhall, U., & Møller, M. B. (1989). Changes in pure-tone thresholds in individuals aged 70-81: Results from a longitudinal study. Audiology: Official Organ of the International Society of Audiology, 28(4), 194–204. https://doi.org/10.3109/00206098909081624.

Reschke-Hernández, A. E., Okerstrom, K. L., Edwards, A. B., & Tranel, D. (2017). Sex and stress: Men and women show different cortisol responses to psychological stress induced by the Trier social stress test and the Iowa singing social stress test. Journal of Neuroscience Research, 95(1–2), 106–114. https://doi.org/10.1002/jnr.23851.

Ribble, D. O. (2003). The evolution of social and reproductive monogamy in Peromyscus: Evidence from Peromyscus californicus (the California mouse). In C. Boesch & U. H. Reichard (Eds.), Monogamy: Mating strategies and partnerships in birds, humans and other mammals (pp. 81–92). Cambridge University Press. https://doi.org/10.1017/CBO9781139087247.005.

Ro, J. Y., Zhang, Y., Tricou, C., Yang, D., da Silva, J. T., & Zhang, R. (2020). Age and sex differences in acute and osteoarthritis-like pain responses in rats. The Journals of Gerontology: Series A, 75(8), 1465–1472. https://doi.org/10.1093/gerona/glz186.

Schroeder, J. A. (2010). Sex and gender in sensation and perception. In J. C. Chrisler & D. R. McCreary (Eds.), Handbook of gender research in psychology: Volume 1: Gender research in general and experimental psychology (pp. 235–257). New York, NY: Springer. https://doi.org/10.1007/978-1-4419-1465-1_12.

Seedat, S., Scott, K. M., Angermeyer, M. C., Berglund, P., Bromet, E. J., Brugha, T. S., Demyttenaere, K., et al. (2009). Cross-national associations between gender and mental disorders in the World Health Organization World Mental Health Surveys. Archives of General Psychiatry, 66(7), 785–795. https://doi.org/10.1001/archgenpsychiatry.2009.36.

Sommer, V., & Vasey, P. L. (2006). Homosexual behaviour in animals: An evolutionary perspective. Cambridge University Press.

Sorokowski, P., Karwowski, M., Misiak, M., Marczak, M. K., Dziekan, M., Hummel, T., & Sorokowska, A. (2019). Sex differences in human olfaction: A meta-analysis. Frontiers in Psychology, 10(February). https://doi.org/10.3389/fpsyg.2019.00242.

Stroud, L. R., Salovey, P., & Epel, E. S. (2002). Sex differences in stress responses: Social rejection versus achievement stress. Biological Psychiatry , 52(4), 318–327. https://doi.org/10.1016/S0006-3223(02)01333-1.

Tang, C., Li, J., Tai, W. L., Yao, W., Zhao, B., Hong, J., Shi, S., Wang, S., & Xia, Z. (2017). Sex differences in complex regional pain syndrome type I (CRPS-I) in mice. Journal of Pain Research, 10(July), 1811–1819. https://doi.org/10.2147/JPR.S139365.

Trivers, R. (1972). Parental investment and sexual selection. In B. Campbell (Ed.), Sexual selection and the descent of man (pp. 136–179). Aldine Publishing Company.

Williams, E. S., Manning, C. E., Eagle, A. L., Swift-Gallant, A., Duque-Wilckens, N., Chinnusamy, S., Moeser, A., Jordan, C., Leinninger, G., & Robison, A. J. (2020). Androgen-dependent excitability of mouse ventral hippocampal afferents to nucleus accumbens underlies sex-specific susceptibility to stress. Biological Psychiatry, 87(6), 492–501. https://doi.org/10.1016/j.biopsych.2019.08.006.

Youssef, F. F., Bachew, R., Bissessar, S., Crockett, M. J., & Faber, N. S. (2018). Sex differences in the effects of acute stress on behavior in the ultimatum game. Psychoneuroendocrinology, 96(October), 126–131. https://doi.org/10.1016/j.psyneuen.2018.06.012.

11.2 Mechanisms of Sexual Determination and Differentiation

Arnold, A. P. (1975). The effects of castration and androgen replacement on song, courtship, and aggression in zebra finches (Poephila guttata). The Journal of Experimental Zoology, 191(3), 309–326. https://doi.org/10.1002/jez.1401910302.

Arnold, A. P. (2017). A general theory of sexual differentiation. Journal of Neuroscience Research, 95(1–2), 291–300. https://doi.org/10.1002/jnr.23884.

Baudat, F., de Massy, B., & Veyrunes, F. (2019). Sex chromosome quadrivalents in oocytes of the African pygmy mouse Mus minutoides that harbors non-conventional sex chromosomes. Chromosoma, 128(3), 397–411. https://doi.org/10.1007/s00412-019-00699-4.

Bock, S. L., Loera, Y., Johnson, J. M., Smaga, C. R., Haskins, D. L., Tuberville, T. D., Singh, R., Rainwater, T. R., Wilkinson, P. M., & Parrott, B. B. (2023). Differential early-life survival underlies the adaptive significance of temperature-dependent sex determination in a long-lived reptile. Functional Ecology, 37(11), 2895–2909. https://doi.org/10.1111/1365-2435.14420.

Bonthuis, P. J., Cox, K. H., & Rissman, E. F. (2012). X-chromosome dosage affects male sexual behavior. Hormones and Behavior, 61(4), 565–572. https://doi.org/10.1016/j.yhbeh.2012.02.003.

Cooke, B. M., Tabibnia, G., & Breedlove, S. M. (1999). A brain sexual dimorphism controlled by adult circulating androgens. Proceedings of the National Academy of Sciences of the United States of America, 96(13), 7538–7540. https://doi.org/10.1073/pnas.96.13.7538.

Döhler, K. D., Coquelin, A., Davis, F., Hines, M., Shryne, J. E., & Gorski, R. A. (1984). Pre- and postnatal influence of testosterone propionate and diethylstilbestrol on differentiation of the sexually dimorphic nucleus of the preoptic area in male and female rats. Brain Research, 302(2), 291–295. https://doi.org/10.1016/0006-8993(84)90242-7.

Ezaz, T., Stiglec, R., Veyrunes, F., & Marshall Graves, J. A. (2006). Relationships between vertebrate ZW and XY sex chromosome systems. Current Biology, 16(17), R736–R743. https://doi.org/10.1016/j.cub.2006.08.021.

Ferguson, M. W. J., & Joanen, T. (1982). Temperature of egg incubation determines sex in Alligator mississippiensis. Nature, 296(5860), 850–853. https://doi.org/10.1038/296850a0.

Gorski, R. A., Gordon, J. H., Shryne, J. E., & Southam, A. M. (1978). Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Research, 148(2), 333–346. https://doi.org/10.1016/0006-8993(78)90723-0.

Guler, Y., Short, S., Kile, P., & Ford, A. T. (2012). Integrating field and laboratory evidence for environmental sex determination in the amphipod, Echinogammarus marinus. Marine Biology, 159(12), 2885–2890. https://doi.org/10.1007/s00227-012-2042-2.

Gurney, M. E. (1981). Hormonal control of cell form and number in the zebra finch song system. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 1(6), 658–673. https://doi.org/10.1523/JNEUROSCI.01-06-00658.1981.

Hobbs, J. A., Munday, P. L., & Jones, G. P. (2004). Social induction of maturation and sex determination in a coral reef fish. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(1553), 2109–2114. https://doi.org/10.1098/rspb.2004.2845.

Holloway, C. C., & Clayton, D. F. (2001). Estrogen synthesis in the male brain triggers development of the avian song control pathway in vitro. Nature Neuroscience, 4(2), 170–175. https://doi.org/10.1038/84001.

Kashimada, K., & Koopman, P. (2010). Sry: The master switch in mammalian sex determination. Development, 137(23), 3921–3930. https://doi.org/10.1242/dev.048983.

Manabe, H., Ishimura, M., Shinomiya, A., & Sunobe, T. (2007). Field evidence for bi-directional sex change in the polygynous gobiid fish Trimma okinawae. Journal of Fish Biology, 70(2), 600–609. https://doi.org/10.1111/j.1095-8649.2007.01338.x.

Moore, E. C., & Roberts, R. B. (2013). Polygenic sex determination. Current Biology: CB, 23(12), R510–R512. https://doi.org/10.1016/j.cub.2013.04.004.

Nagahama, Y., Chakraborty, T., Paul-Prasanth, B., Ohta, K., & Nakamura, M. (2021). Sex determination, gonadal sex differentiation, and plasticity in vertebrate species. Physiological Reviews, 101(3), 1237–1308. https://doi.org/10.1152/physrev.00044.2019.

Nottebohm, F. (1980). Testosterone triggers growth of brain vocal control nuclei in adult female canaries. Brain Research, 189(2), 429–436. https://doi.org/10.1016/0006-8993(80)90102-X.

Renfree, M. B., & Short, R. V. (1988). Sex determination in marsupials: Evidence for a marsupial-eutherian dichotomy. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 322(1208), 41–53. https://doi.org/10.1098/rstb.1988.0112.

Saunders, P. A., Perez, J., Ronce, O., & Veyrunes, F. (2022). Multiple sex chromosome drivers in a mammal with three sex chromosomes. Current Biology, 32(9), 2001–2010.e3. https://doi.org/10.1016/j.cub.2022.03.029.

Ser, J. R., Roberts, R. B., & Kocher, T. D. (2010). Multiple interacting loci control sex determination in Lake Malawi cichlid fishes. Evolution; International Journal of Organic Evolution, 64(2), 486–501. https://doi.org/10.1111/j.1558-5646.2009.00871.x.

Yatsu, R., Miyagawa, S., Kohno, S., Parrott, B. B., Yamaguchi, K., Ogino, Y., Miyakawa, H., et al. (2016). RNA-seq analysis of the gonadal transcriptome during Alligator mississippiensis temperature-dependent sex determination and differentiation. BMC Genomics, 17(1), 77. https://doi.org/10.1186/s12864-016-2396-9.

Zucker, I., Prendergast, B. J., & Beery, A. K. (2022). Pervasive neglect of sex differences in biomedical research. Cold Spring Harbor Perspectives in Biology, 14(4), a039156. https://doi.org/10.1101/cshperspect.a039156.

11.3 Sex Differences in Brain and Behavior: Genetic, Hormonal, and Environmental Mechanisms

Balalian, A. A., Stingone, J. A., Kahn, L. G., Herbstman, J. B., Graeve, R. I., Stellman, S. D., & Factor-Litvak, P. (2024). Perinatal exposure to polychlorinated biphenyls (PCBs) and child neurodevelopment: A comprehensive systematic review of outcomes and methodological approaches. Environmental Research, 252(July), 118912. https://doi.org/10.1016/j.envres.2024.118912.

Barha, C. K., Davis, J. C., Falck, R. S., Nagamatsu, L. S., & Liu-Ambrose, T. (2017). Sex differences in exercise efficacy to improve cognition: A systematic review and meta-analysis of randomized controlled trials in older humans. Frontiers in Neuroendocrinology, 46(July), 71–85. https://doi.org/10.1016/j.yfrne.2017.04.002.

Barha, C. K., Falck, R. S., Davis, J. C., Nagamatsu, L. S., & Liu-Ambrose, T. (2017). Sex differences in aerobic exercise efficacy to improve cognition: A systematic review and meta-analysis of studies in older rodents. Frontiers in Neuroendocrinology, 46(July), 86–105. https://doi.org/10.1016/j.yfrne.2017.06.001.

Berletch, J. B., Yang, F., Xu, J., Carrel, L., & Disteche, C. M. (2011). Genes that escape from X inactivation. Human Genetics, 130(2), 237–245. https://doi.org/10.1007/s00439-011-1011-z.

Dewing, P., Chiang, C. W. K., Sinchak, K., Sim, H., Fernagut, P.-O., Kelly, S., Chesselet, M.-F., et al. (2006). Direct regulation of adult brain function by the male-specific factor SRY. Current Biology: CB, 16(4), 415–420. https://doi.org/10.1016/j.cub.2006.01.017.

Dickerson, S. M., Cunningham, S. L., Patisaul, H. B., Woller, M. J., & Gore, A. C. (2011). Endocrine disruption of brain sexual differentiation by developmental PCB exposure. Endocrinology, 152(2), 581–594. https://doi.org/10.1210/en.2010-1103.

Frick, K. M., & Kim, J. (2018). Mechanisms underlying the rapid effects of estradiol and progesterone on hippocampal memory consolidation in female rodents. Hormones and Behavior, 104(August), 100–110. https://doi.org/10.1016/j.yhbeh.2018.04.013.

Gegenhuber, B., Wu, M. V., Bronstein, R., & Tollkuhn, J. (2022). Gene regulation by gonadal hormone receptors underlies brain sex differences. Nature, 606(7912), 153–159. https://doi.org/10.1038/s41586-022-04686-1.

Goetz, S. M. M., Tang, L., Thomason, M. E., Diamond, M. P., Hariri, A. R., & Carré, J. M. (2014). Testosterone rapidly increases neural reactivity to threat in healthy men: A novel two-step pharmacological challenge paradigm. Biological Psychiatry, 76(4), 324–331. https://doi.org/10.1016/j.biopsych.2014.01.016.

Jašarević, E., Sieli, P. T., Twellman, E. E., Welsh, T. H., Schachtman, T. R., Roberts, R. M., Geary, D. C., & Rosenfeld, C. S. (2011). Disruption of adult expression of sexually selected traits by developmental exposure to bisphenol A. Proceedings of the National Academy of Sciences of the United States of America, 108(28), 11715–11720. https://doi.org/10.1073/pnas.1107958108.

Kesler, S. R., Garrett, A., Bender, B., Yankowitz, J., Zeng, S. M., & Reiss, A. L. (2004). Amygdala and hippocampal volumes in Turner syndrome: A high-resolution MRI study of X-monosomy. Neuropsychologia, 42(14), 1971–1978. https://doi.org/10.1016/j.neuropsychologia.2004.04.021.

Koss, W. A., & Frick, K. M. (2017). Sex differences in hippocampal function. Journal of Neuroscience Research, 95(1–2), 539–562. https://doi.org/10.1002/jnr.23864.

Lee, J., Pinares-Garcia, P., Loke, H., Ham, S., Vilain, E., & Harley, V. R. (2019). Sex-specific neuroprotection by inhibition of the Y-chromosome gene, SRY, in experimental Parkinson’s disease. Proceedings of the National Academy of Sciences, 116(33), 16577–16582. https://doi.org/10.1073/pnas.1900406116.

McCarthy, M. M., Auger, A. P., Bale, T. L., De Vries, G. J., Dunn, G. A., Forger, N. G., Murray, E. K., Nugent, B. M., Schwarz, J. M., & Wilson, M. E. (2009). The epigenetics of sex differences in the brain. The Journal of Neuroscience, 29(41), 12815–12823. https://doi.org/10.1523/JNEUROSCI.3331-09.2009.

McEwen, B. S., Akama, K. T., Spencer-Segal, J. L., Milner, T. A., & Waters, E. M. (2012). Estrogen effects on the brain: Actions beyond the hypothalamus via novel mechanisms. Behavioral Neuroscience, 126(1), 4–16. https://doi.org/10.1037/a0026708.

Nguyen, D. K., & Disteche, C. M. (2006). Dosage compensation of the active X chromosome in mammals. Nature Genetics, 38(1), 47–53. https://doi.org/10.1038/ng1705.

Nugent, B. M., Wright, C. L., Shetty, A. C., Hodes, G. E., Lenz, K. M., Mahurkar, A., Russo, S. J., Devine, S. E., & McCarthy, M. M. (2015). Brain feminization requires active repression of masculinization via DNA methylation. Nature Neuroscience, 18(5), 690–697. https://doi.org/10.1038/nn.3988.

Raznahan, A., Lue, Y., Probst, F., Greenstein, D., Giedd, J., Wang, C., Lerch, J., & Swerdloff, R. (2015). Triangulating the sexually dimorphic brain through high-resolution neuroimaging of murine sex chromosome aneuploidies. Brain Structure and Function, 220(6), 3581–3593. https://doi.org/10.1007/s00429-014-0875-9.

Raznahan, A., Probst, F., Palmert, M. R., Giedd, J. N., & Lerch, J. P. (2013). High resolution whole brain imaging of anatomical variation in XO, XX, and XY mice. NeuroImage, 83(December), 962–968. https://doi.org/10.1016/j.neuroimage.2013.07.052.

Sandstrom, N. J., & Williams, C. L. (2001). Memory retention is modulated by acute estradiol and progesterone replacement. Behavioral Neuroscience, 115(2), 384–393.

Walker, D. M., Zhou, X., Cunningham, A. M., Lipschultz, A. P., Ramakrishnan, A., Cates, H. M., Bagot, R. C., Shen, L., Zhang, B., & Nestler, E. J. (2022). Sex-specific transcriptional changes in response to adolescent social stress in the brain’s reward circuitry. Biological Psychiatry, 91(1), 118–128. https://doi.org/10.1016/j.biopsych.2021.02.964.

Wallentin, M., Skakkebæk, A., Bojesen, A., Fedder, J., Laurberg, P., Østergaard, J. R., Hertz, J. M., Pedersen, A. D., & Gravholt, C. H. (2016). Klinefelter syndrome has increased brain responses to auditory stimuli and motor output, but not to visual stimuli or Stroop adaptation. NeuroImage: Clinical, 11(February), 239–251. https://doi.org/10.1016/j.nicl.2016.02.002.

11.4 Sex Differences in Brain Circuits and Susceptibility to Psychiatric Disease

Altemus, M., Sarvaiya, N., & Epperson, C. N. (2014). Sex differences in anxiety and depression clinical perspectives. Frontiers in Neuroendocrinology, 35(3), 320–330. https://doi.org/10.1016/j.yfrne.2014.05.004.

Bangasser, D. A., & Wiersielis, K. R. (2018). Sex differences in stress responses: A critical role for corticotropin-releasing factor. Hormones, 17(1), 5–13. https://doi.org/10.1007/s42000-018-0002-z.

Berman, N. E. J., Puri, V., Chandrala, S., Puri, S., Macgregor, R., Liverman, C. S., & Klein, R. M. (2006). Serotonin in trigeminal ganglia of female rodents: Relevance to menstrual migraine. Headache, 46(8), 1230–1245. https://doi.org/10.1111/j.1526-4610.2006.00528.x.

Bingaman, E. W., Magnuson, D. J., Gray, T. S., & Handa, R. J. (2008). Androgen inhibits the increases in hypothalamic corticotropin-releasing hormone (CRH) and CRH-immunoreactivity following gonadectomy. Neuroendocrinology, 59(3), 228–234. https://doi.org/10.1159/000126663.

Boku, S., Nakagawa, S., Toda, H., & Hishimoto, A. (2018). Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry and Clinical Neurosciences, 72(1), 3–12. https://doi.org/10.1111/pcn.12604.

Calipari, E. S., Juarez, B., Morel, C., Walker, D. M., Cahill, M. E., Ribeiro, E., Roman-Ortiz, C., et al. (2017). Dopaminergic dynamics underlying sex-specific cocaine reward. Nature Communications, 8(January), 13877. https://doi.org/10.1038/ncomms13877.

Dalla, C., Antoniou, K., Drossopoulou, G., Xagoraris, M., Kokras, N., Sfikakis, A., & Papadopoulou-Daifoti, Z. (2005). Chronic mild stress impact: Are females more vulnerable? Neuroscience, 135(3), 703–714. https://doi.org/10.1016/j.neuroscience.2005.06.068.

Dumais, K. M., Bredewold, R., Mayer, T. E., & Veenema, A. H. (2013). Sex differences in oxytocin receptor binding in forebrain regions: Correlations with social interest in brain region- and sex-specific ways. Hormones and Behavior, 64(4), 693–701. https://doi.org/10.1016/j.yhbeh.2013.08.012.

Duque-Wilckens, N., Steinman, M. Q., Busnelli, M., Chini, B., Yokoyama, S., Pham, M., Laredo, S. A., et al. (2018). Oxytocin receptors in the anteromedial bed nucleus of the stria terminalis promote stress-induced social avoidance in female California mice. Biological Psychiatry, 83(3), 203–213. https://doi.org/10.1016/j.biopsych.2017.08.024.

Duque-Wilckens, N., Steinman, M. Q., Laredo, S. A., Hao, R., Perkeybile, A. M., Bales, K. L., & Trainor, B. C. (2016). Inhibition of vasopressin V1a receptors in the medioventral bed nucleus of the stria terminalis has sex- and context-specific anxiogenic effects. Neuropharmacology, 110(Pt A), 59–68. https://doi.org/10.1016/j.neuropharm.2016.07.018.

Duque-Wilckens, N., Teis, R., Sarno, E., Stoelting, F., Khalid, S., Dairi, Z., Douma, A., et al. (2022). Early life adversity drives sex-specific anhedonia and meningeal immune gene expression through mast cell activation. Brain, Behavior, and Immunity, 103(July), 73–84. https://doi.org/10.1016/j.bbi.2022.03.009.

Duque-Wilckens, N., Torres, L. Y., Yokoyama, S., Minie, V. A., Tran, A. M., Petkova, S. P., Hao, R., et al. (2020). Extrahypothalamic oxytocin neurons drive stress-induced social vigilance and avoidance. Proceedings of the National Academy of Sciences of the United States of America, 117(42), 26406–26413. https://doi.org/10.1073/pnas.2011890117.

Figueiredo, H. F., Dolgas, C. M., & Herman, J. P. (2002). Stress activation of cortex and hippocampus is modulated by sex and stage of estrus. Endocrinology, 143(7), 2534–2540. https://doi.org/10.1210/endo.143.7.8888.

Goel, N., & Bale, T. L. (2008). Organizational and activational effects of testosterone on masculinization of female physiological and behavioral stress responses. Endocrinology, 149(12), 6399–6405. https://doi.org/10.1210/en.2008-0433.

Haas, D. A., & George, S. R. (1989). Estradiol or ovariectomy decreases CRF synthesis in hypothalamus. Brain Research Bulletin, 23(3), 215–218. https://doi.org/10.1016/0361-9230(89)90150-0.

Han, J., Fan, Y., Zhou, K., Blomgren, K., & Harris, R. A. (2021). Uncovering sex differences of rodent microglia. Journal of Neuroinflammation, 18(1), 74. https://doi.org/10.1186/s12974-021-02124-z.

Handa, R. J., & Weiser, M. J. (2014). Gonadal steroid hormones and the hypothalamo–pituitary–adrenal axis. Frontiers in Neuroendocrinology, 35(2), 197–220. https://doi.org/10.1016/j.yfrne.2013.11.001.

Kessler, R. C., Petukhova, M., Sampson, N. A., Zaslavsky, A. M., & Wittchen, H.-U. (2012). Twelve-month and lifetime prevalence and lifetime morbid risk of anxiety and mood disorders in the United States. International Journal of Methods in Psychiatric Research, 21(3), 169–184. https://doi.org/10.1002/mpr.1359.

Lenz, K. M., Pickett, L. A., Wright, C. L., Davis, K. T., Joshi, A., & McCarthy, M. M. (2018). Mast cells in the developing brain determine adult sexual behavior. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 38(37), 8044–8059. https://doi.org/10.1523/JNEUROSCI.1176-18.2018.

Mackey, E., Thelen, K. M., Bali, V., Fardisi, M., Trowbridge, M., Jordan, C. L., & Moeser, A. J. (2020). Perinatal androgens organize sex differences in mast cells and attenuate anaphylaxis severity into adulthood. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23751–23761. https://doi.org/10.1073/pnas.1915075117.

Oyola, M. G., & Handa, R. J. (2017). Hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes: Sex differences in regulation of stress responsivity. Stress, 20(5), 476–494. https://doi.org/10.1080/10253890.2017.1369523.

Peng, G., Tian, J., Gao, X., Zhou, Y., & Qin, X. (2015). Research on the pathological mechanism and drug treatment mechanism of depression. Current Neuropharmacology, 13(4), 514–523. https://doi.org/10.2174/1570159x1304150831120428.

Rigney, N., Whylings, J., de Vries, G. J., & Petrulis, A. (2020). Sex differences in the control of social investigation and anxiety by vasopressin cells of the paraventricular nucleus of the hypothalamus. Neuroendocrinology, 111(6), 521–535. https://doi.org/10.1159/000509421.

Rincón-Cortés, M., & Grace, A. A. (2017). Sex-dependent effects of stress on immobility behavior and VTA dopamine neuron activity: Modulation by ketamine. The International Journal of Neuropsychopharmacology, 20(10), 823–832. https://doi.org/10.1093/ijnp/pyx048.

Silver, R., Silverman, A.-J., Vitković, L., & Lederhendler, I. I. (1996). Mast cells in the brain: Evidence and functional significance. Trends in Neurosciences, 19(1), 25–31. https://doi.org/10.1016/0166-2236(96)81863-7.

Steinman, M. Q., Laredo, S. A., Lopez, E. M., Manning, C. E., Hao, R. C., Doig, I. E., Campi, K. L., Flowers, A. E., Knight, J. K., & Trainor, B. C. (2015). Hypothalamic vasopressin systems are more sensitive to the long term effects of social defeat in males versus females. Psychoneuroendocrinology, 51(January), 122–134. https://doi.org/10.1016/j.psyneuen.2014.09.009.

Wang, H., He, Y., Sun, Z., Ren, S., Liu, M., Wang, G., & Yang, J. (2022). Microglia in depression: An overview of microglia in the pathogenesis and treatment of depression. Journal of Neuroinflammation, 19(1), 132. https://doi.org/10.1186/s12974-022-02492-0.

Xiao, L., & Becker, J. B. (1994). Quantitative microdialysis determination of extracellular striatal dopamine concentration in male and female rats: Effects of estrous cycle and gonadectomy. Neuroscience Letters, 180(2), 155–158. https://doi.org/10.1016/0304-3940(94)90510-x.

Yang, E.-J., Frolinger, T., Iqbal, U., Estill, M., Shen, L., Trageser, K. J., & Pasinetti, G. M. (2024). The role of the Toll like receptor 4 signaling in sex-specific persistency of depression-like behavior in response to chronic stress. Brain, Behavior, and Immunity, 115(January), 169–178. https://doi.org/10.1016/j.bbi.2023.10.006.

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/introduction-behavioral-neuroscience/pages/1-introduction
Citation information

© Oct 30, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.