Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Intermediate Algebra

Review Exercises

Intermediate AlgebraReview Exercises

Review Exercises

Use the Language of Algebra

Identify Multiples and Factors

385.

Use the divisibility tests to determine whether 180 is divisible by 2, by 3, by 5, by 6, and by 10.

386.

Find the prime factorization of 252.

387.

Find the least common multiple of 24 and 40.

In the following exercises, simplify each expression.

388.

24 ÷ 3 + 4 ( 5 2 ) 24 ÷ 3 + 4 ( 5 2 )

389.

7 + 3 [ 6 4 ( 5 4 ) ] 3 2 7 + 3 [ 6 4 ( 5 4 ) ] 3 2

Evaluate an Expression

In the following exercises, evaluate the following expressions.

390.

When x=4,x=4, x3x3 5x5x 2x25x+32x25x+3

391.

2x24xy3y22x24xy3y2 when x=3,x=3, y=1y=1

Simplify Expressions by Combining Like Terms

In the following exercises, simplify the following expressions by combining like terms.

392.

12 y + 7 + 2 y 5 12 y + 7 + 2 y 5

393.

14 x 2 9 x + 11 8 x 2 + 8 x 6 14 x 2 9 x + 11 8 x 2 + 8 x 6

Translate an English Phrase to an Algebraic Expression

In the following exercises, translate the phrases into algebraic expressions.

394.


the sum of 4ab24ab2 and 7a3b27a3b2
the product of 6y26y2 and 3y3y
twelve more than 5x5x
5y5y less than 8y28y2

395.


eleven times the difference of yy and two
the difference of eleven times yy and two

396.

Dushko has nickels and pennies in his pocket. The number of pennies is four less than five the number of nickels. Let nn represent the number of nickels. Write an expression for the number of pennies.

Integers

Simplify Expressions with Absolute Value

In the following exercise, fill in <,>,<,>, or == for each of the following pairs of numbers.

397.


|7|___|−7||7|___|−7|
−8___|−8|−8___|−8|
|−13|___13|−13|___13
|−12|___(−12)|−12|___(−12)

In the following exercises, simplify.

398.

9 | 3 ( 4 8 ) | 9 | 3 ( 4 8 ) |

399.

12 3 | 1 4 ( 4 2 ) | 12 3 | 1 4 ( 4 2 ) |

Add and Subtract Integers

In the following exercises, simplify each expression.

400.

−12 + ( −8 ) + 7 −12 + ( −8 ) + 7

401.


157157
−15(−7)−15(−7)
−157−157
15(−7)15(−7)

402.

−11 ( −12 ) + 5 −11 ( −12 ) + 5

403.

23(−17)23(−17) 23+1723+17

404.

( 7 11 ) ( 3 5 ) ( 7 11 ) ( 3 5 )

Multiply and Divide Integers

In the following exercise, multiply or divide.

405.

−27÷9−27÷9 120÷(−8)120÷(−8) 4(−14)4(−14) −1(−17)−1(−17)

Simplify and Evaluate Expressions with Integers

In the following exercises, simplify each expression.

406.

(−7)3(−7)3 7373

407.

( 7 11 ) ( 6 13 ) ( 7 11 ) ( 6 13 )

408.

63 ÷ ( −9 ) + ( −36 ) ÷ ( −4 ) 63 ÷ ( −9 ) + ( −36 ) ÷ ( −4 )

409.

6 3 | 4 ( 1 2 ) ( 7 5 ) | 6 3 | 4 ( 1 2 ) ( 7 5 ) |

410.

( −2 ) 4 24 ÷ ( 13 5 ) ( −2 ) 4 24 ÷ ( 13 5 )

For the following exercises, evaluate each expression.

411.

(y+z)2(y+z)2 when
y=−4,z=7y=−4,z=7

412.

3x22xy+4y23x22xy+4y2 when
x=−2,y=−3x=−2,y=−3

Translate English Phrases to Algebraic Expressions

In the following exercises, translate to an algebraic expression and simplify if possible.

413.

the sum of −4−4 and −9,−9, increased by 23

414.

the difference of 17 and −8−8 subtract 17 from −25−25

Use Integers in Applications

In the following exercise, solve.

415.

Temperature On July 10, the high temperature in Phoenix, Arizona, was 109°, and the high temperature in Juneau, Alaska, was 63°. What was the difference between the temperature in Phoenix and the temperature in Juneau?

Fractions

Simplify Fractions

In the following exercises, simplify.

416.

204 228 204 228

417.

270 x 3 198 y 2 270 x 3 198 y 2

Multiply and Divide Fractions

In the following exercises, perform the indicated operation.

418.

( 14 15 ) ( 10 21 ) ( 14 15 ) ( 10 21 )

419.

6 x 25 ÷ 9 y 20 6 x 25 ÷ 9 y 20

420.

4 9 8 21 4 9 8 21

Add and Subtract Fractions

In the following exercises, perform the indicated operation.

421.

5 18 + 7 12 5 18 + 7 12

422.

11 36 15 48 11 36 15 48

423.

58+3458+34 58÷3458÷34

424.

3y10563y1056 3y10·563y10·56

Use the Order of Operations to Simplify Fractions

In the following exercises, simplify.

425.

4 · 3 2 · 5 −6 · 3 + 2 · 3 4 · 3 2 · 5 −6 · 3 + 2 · 3

426.

4 ( 7 3 ) 2 ( 4 9 ) −3 ( 4 + 2 ) + 7 ( 3 6 ) 4 ( 7 3 ) 2 ( 4 9 ) −3 ( 4 + 2 ) + 7 ( 3 6 )

427.

4 3 4 2 ( 4 5 ) 2 4 3 4 2 ( 4 5 ) 2

Evaluate Variable Expressions with Fractions

In the following exercises, evaluate.

428.

4x2y24x2y2 when
x=23x=23 and y=34y=34

429.

a+baba+bab when
a=−4,a=−4, b=6b=6

Decimals

Round Decimals

430.

Round 6.7386.738 to the nearest hundredth tenth whole number.

Add and Subtract Decimals

In the following exercises, perform the indicated operation.

431.

−23.67 + 29.84 −23.67 + 29.84

432.

54.3 100 54.3 100

433.

79.38 ( −17.598 ) 79.38 ( −17.598 )

Multiply and Divide Decimals

In the following exercises, perform the indicated operation.

434.

( −2.8 ) ( 3.97 ) ( −2.8 ) ( 3.97 )

435.

( −8.43 ) ( −57.91 ) ( −8.43 ) ( −57.91 )

436.

( 53.48 ) ( 10 ) ( 53.48 ) ( 10 )

437.

( 0.563 ) ( 100 ) ( 0.563 ) ( 100 )

438.

$ 118.35 ÷ 2.6 $ 118.35 ÷ 2.6

439.

1.84 ÷ ( −0.8 ) 1.84 ÷ ( −0.8 )

Convert Decimals, Fractions and Percents

In the following exercises, write each decimal as a fraction.

440.

13 20 13 20

441.

240 25 240 25

In the following exercises, convert each fraction to a decimal.

442.

5 8 5 8

443.

14 11 14 11

In the following exercises, convert each decimal to a percent.

444.

2.43 2.43

445.

0.0475 0.0475

Simplify Expressions with Square Roots

In the following exercises, simplify.

446.

289 289

447.

−121 −121

Identify Integers, Rational Numbers, Irrational Numbers, and Real Numbers

In the following exercise, list the whole numbers integers rational numbers irrational numbers real numbers for each set of numbers

448.

−8 , 0 , 1.95286... , 12 5 , 36 , 9 −8 , 0 , 1.95286... , 12 5 , 36 , 9

Locate Fractions and Decimals on the Number Line

In the following exercises, locate the numbers on a number line.

449.

3 4 , 3 4 , 1 1 3 , −1 2 3 , 7 2 , 5 2 3 4 , 3 4 , 1 1 3 , −1 2 3 , 7 2 , 5 2

450.

3.23.2 −1.35−1.35

Properties of Real Numbers

Use the Commutative and Associative Properties

In the following exercises, simplify.

451.

5 8 x + 5 12 y + 1 8 x + 7 12 y 5 8 x + 5 12 y + 1 8 x + 7 12 y

452.

−32 · 9 · 5 8 −32 · 9 · 5 8

453.

( 11 15 + 3 8 ) + 5 8 ( 11 15 + 3 8 ) + 5 8

Use the Properties of Identity, Inverse and Zero

In the following exercises, simplify.

454.

4 7 + 8 15 + ( 4 7 ) 4 7 + 8 15 + ( 4 7 )

455.

13 15 · 9 17 · 15 13 13 15 · 9 17 · 15 13

456.

0 x 3 , x 3 0 x 3 , x 3

457.

5 x 7 0 , 5 x 7 0 5 x 7 0 , 5 x 7 0

Simplify Expressions Using the Distributive Property

In the following exercises, simplify using the Distributive Property.

458.

8 ( a 4 ) 8 ( a 4 )

459.

12 ( 2 3 b + 5 6 ) 12 ( 2 3 b + 5 6 )

460.

18 · 5 6 ( 2 x 5 ) 18 · 5 6 ( 2 x 5 )

461.

( x 5 ) p ( x 5 ) p

462.

−4 ( y 3 ) −4 ( y 3 )

463.

12 6 ( x + 3 ) 12 6 ( x + 3 )

464.

6 ( 3 x 4 ) ( −5 ) 6 ( 3 x 4 ) ( −5 )

465.

5 ( 2 y + 3 ) ( 4 y 1 ) 5 ( 2 y + 3 ) ( 4 y 1 )

Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/intermediate-algebra/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/intermediate-algebra/pages/1-introduction
Citation information

© Feb 9, 2022 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.