Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo

Welcome to Intermediate Algebra 2e, an OpenStax resource. This textbook was written to increase student access to high-quality learning materials, maintaining highest standards of academic rigor at little to no cost.

About OpenStax

OpenStax is a nonprofit based at Rice University, and it’s our mission to improve student access to education. Our first openly licensed college textbook was published in 2012, and our library has since scaled to over 35 books for college and AP courses used by hundreds of thousands of students. Our adaptive learning technology, designed to improve learning outcomes through personalized educational paths, is being piloted in college courses throughout the country. Through our partnerships with philanthropic foundations and our alliance with other educational resource organizations, OpenStax is breaking down the most common barriers to learning and empowering students and instructors to succeed.

About OpenStax Resources


Intermediate Algebra 2e is licensed under a Creative Commons Attribution 4.0 International (CC BY) license, which means that you can distribute, remix, and build upon the content, as long as you provide attribution to OpenStax and its content contributors.

Because our books are openly licensed, you are free to use the entire book or pick and choose the sections that are most relevant to the needs of your course. Feel free to remix the content by assigning your students certain chapters and sections in your syllabus, in the order that you prefer. You can even provide a direct link in your syllabus to the sections in the web view of your book.

Instructors also have the option of creating a customized version of their OpenStax book. The custom version can be made available to students in low-cost print or digital form through their campus bookstore. Visit your book page on for more information.

Art attribution in Intermediate Algebra 2e

In Intermediate Algebra 2e, most art contains attribution to its title, creator or rights holder, host platform, and license within the caption. For art that is openly licensed, anyone may reuse the art as long as they provide the same attribution to its original source. Some art has been provided through permissions and should only be used with the attribution or limitations provided in the credit.


All OpenStax textbooks undergo a rigorous review process. However, like any professional-grade textbook, errors sometimes occur. Since our books are web based, we can make updates periodically when deemed pedagogically necessary. If you have a correction to suggest, submit it through the link on your book page on Subject matter experts review all errata suggestions. OpenStax is committed to remaining transparent about all updates, so you will also find a list of past errata changes on your book page on


You can access this textbook for free in web view or PDF through, and for a low cost in print.

About Intermediate Algebra 2e

Intermediate Algebra 2e is designed to meet the scope and sequence requirements of a one-semester Intermediate Algebra course. The book’s organization makes it easy to adapt to a variety of course syllabi. The text expands on the fundamental concepts of algebra while addressing the needs of students with diverse backgrounds and learning styles. Each topic builds upon previously developed material to demonstrate the cohesiveness and structure of mathematics.

Coverage and Scope

Intermediate Algebra 2e continues the philosophies and pedagogical features of Prealgebra and Elementary Algebra, by Lynn Marecek and MaryAnne Anthony-Smith. By introducing the concepts and vocabulary of algebra in a nurturing, non-threatening environment while also addressing the needs of students with diverse backgrounds and learning styles, the book helps students gain confidence in their ability to succeed in the course and become successful college students.

The material is presented as a sequence of small, and clear steps to conceptual understanding. The order of topics was carefully planned to emphasize the logical progression throughout the course and to facilitate a thorough understanding of each concept. As new ideas are presented, they are explicitly related to previous topics.

  • Chapter 1: Foundations
    Chapter 1 reviews arithmetic operations with whole numbers, integers, fractions, decimals and real numbers, to give the student a solid base that will support their study of algebra.
  • Chapter 2: Solving Linear Equations and Inequalities
    In Chapter 2, students learn to solve linear equations using the Properties of Equality and a general strategy. They use a problem-solving strategy to solve number, percent, mixture and uniform motion applications. Solving a formula for a specific variable, and also solving both linear and compound inequalities is presented.
  • Chapter 3: Graphs and Functions
    Chapter 3 covers the rectangular coordinate system where students learn to plot graph linear equations in two variables, graph with intercepts, understand slope of a line, use the slope-intercept form of an equation of a line, find the equation of a line, and create graphs of linear inequalities. The chapter also introduces relations and functions as well as graphing of functions.
  • Chapter 4: Systems of Linear Equations
    Chapter 4 covers solving systems of equations by graphing, substitution, and elimination; solving applications with systems of equations, solving mixture applications with systems of equations, and graphing systems of linear inequalities. Systems of equations are also solved using matrices and determinants.
  • Chapter 5: Polynomials and Polynomial Functions
    In Chapter 5, students learn how to add and subtract polynomials, use multiplication properties of exponents, multiply polynomials, use special products, divide monomials and polynomials, and understand integer exponents and scientific notation.
  • Chapter 6: Factoring
    In Chapter 6, students learn the process of factoring expressions and see how factoring is used to solve quadratic equations.
  • Chapter 7: Rational Expressions and Functions
    In Chapter 7, students work with rational expressions, solve rational equations and use them to solve problems in a variety of applications, and solve rational inequalities.
  • Chapter 8: Roots and Radical
    In Chapter 8, students simplify radical expressions, rational exponents, perform operations on radical expressions, and solve radical equations. Radical functions and the complex number system are introduced
  • Chapter 9: Quadratic Equations
    In Chapter 9, students use various methods to solve quadratic equations and equations in quadratic form and learn how to use them in applications. Students will graph quadratic functions using their properties and by transformations.
  • Chapter 10: Exponential and Logarithmic Functions
    In Chapter 10, students find composite and inverse functions, evaluate, graph, and solve both exponential and logarithmic functions.
  • Chapter 11: Conics
    In Chapter 11, the properties and graphs of circles, parabolas, ellipses and hyperbolas are presented. Students also solve applications using the conics and solve systems of nonlinear equations.
  • Chapter 12: Sequences, Series and the Binomial Theorem
    In Chapter 12, students are introduced to sequences, arithmetic sequences, geometric sequences and series and the binomial theorem.

All chapters are broken down into multiple sections, the titles of which can be viewed in the Table of Contents.

Changes to the Second Edition

The Intermediate Algebra 2e revision focused on mathematical clarity and accuracy. Every Example, Try-It, Section Exercise, Review Exercise, and Practice Test item was reviewed by multiple faculty experts, and then verified by authors. This intensive effort resulted in hundreds of changes to the text, problem language, answers, instructor solutions, and graphics.

However, OpenStax and our authors are aware of the difficulties posed by shifting problem and exercise numbers when textbooks are revised. In an effort to make the transition to the 2nd edition as seamless as possible, we have minimized any shifting of exercise numbers. For example, instead of deleting or adding problems where necessary, we replaced problems in order to keep the numbering intact. As a result, in nearly all chapters, there will be no shifting of exercise numbers; in the chapters where shifting does occur, it will be minor. Faculty and course coordinators should be able to use the new edition in a straightforward manner.

Also, to increase convenience, answers to the Be Prepared Exercises will now appear in the regular solutions manuals, rather than as a separate resource.

A detailed transition guide is available as an instructor resource at

Pedagogical Foundation and Features


Each learning objective is supported by one or more worked examples, which demonstrate the problem-solving approaches that students must master. Typically, we include multiple examples for each learning objective to model different approaches to the same type of problem, or to introduce similar problems of increasing complexity.

All examples follow a simple two- or three-part format. First, we pose a problem or question. Next, we demonstrate the solution, spelling out the steps along the way. Finally (for select examples), we show students how to check the solution. Most examples are written in a two-column format, with explanation on the left and math on the right to mimic the way that instructors “talk through” examples as they write on the board in class.

Be Prepared!

Each section, beginning with Section 2.1, starts with a few “Be Prepared!” exercises so that students can determine if they have mastered the prerequisite skills for the section. Reference is made to specific Examples from previous sections so students who need further review can easily find explanations. Answers to these exercises can be found in the supplemental resources that accompany this title.

Try It


Try it The Try It feature includes a pair of exercises that immediately follow an Example, providing the student with an immediate opportunity to solve a similar problem with an easy reference to the example. In the PDF and the Web View version of the text, answers to the Try It exercises are located in the Answer Key

How To


How To Examples use a three column format to demonstrate how to solve an example with a certain procedure. The first column states the formal step, the second column is in words as the teacher would explain the process, and then the third column is the actual math. A How To procedure box follows each of these How To examples and summarizes the series of steps from the example. These procedure boxes provide an easy reference for students.



Media The “Media” icon appears at the conclusion of each section, just prior to the Self Check. This icon marks a list of links to online videos that reinforce the concepts and skills introduced in the section.

Disclaimer: While we have selected videos that closely align to our learning objectives, we did not produce these tutorials, nor were they specifically produced or tailored to accompany Intermediate Algebra 2e.

Self Check

The Self Check includes the learning objectives for the section so that students can self-assess their mastery and make concrete plans to improve.

Art Program

Intermediate Algebra 2e contains many figures and illustrations. Art throughout the text adheres to a clear, understated style, drawing the eye to the most important information in each figure while minimizing visual distractions.

This figure shows three x y-coordinate planes. The first plane shows two lines which intersect at one point. Under the graph it says, “The lines intersect. Intersecting lines have one point in common. There is one solution to this system.” The second x y-coordinate plane shows two parallel lines. Under the graph it says, “The lines are parallel. Parallel lines have no points in common. There is no solution to this system.” The third x y-coordinate plane shows one line. Under the graph it says, “Both equations give the same line. Because we have just one line, there are infinitely many solutions.”

Section Exercises

Each section of every chapter concludes with a well-rounded set of exercises that can be assigned as homework or used selectively for guided practice. Exercise sets are named Practice Makes Perfect to encourage completion of homework assignments.

  • Exercises correlate to the learning objectives. This facilitates assignment of personalized study plans based on individual student needs.
  • Exercises are carefully sequenced to promote building of skills.
  • Values for constants and coefficients were chosen to practice and reinforce arithmetic facts.
  • Even and odd-numbered exercises are paired.
  • Exercises parallel and extend the text examples and use the same instructions as the examples to help students easily recognize the connection.
  • Applications are drawn from many everyday experiences, as well as those traditionally found in college math texts.
  • Everyday Math highlights practical situations using the concepts from that particular section
  • Writing Exercises are included in every exercise set to encourage conceptual understanding, critical thinking, and literacy.

Chapter Review Features

Each chapter concludes with a review of the most important takeaways, as well as additional practice problems that students can use to prepare for exams.

  • Key Terms provide a formal definition for each bold-faced term in the chapter.
  • Key Concepts summarize the most important ideas introduced in each section, linking back to the relevant Example(s) in case students need to review.
  • Chapter Review Exercises include practice problems that recall the most important concepts from each section.
  • Practice Test includes additional problems assessing the most important learning objectives from the chapter.
  • Answer Key includes the answers to all Try It exercises and every other exercise from the Section Exercises, Chapter Review Exercises, and Practice Test.

Answers to Questions in the Book

Answers to Examples and Be Prepared! questions are provided just below the question in the book. All Try It answers are provided in the Answer Key. Odd-numbered Section Exercises, Review Exercises, and Practice Test questions are provided to students in the Answer Key. Even-numbered answers are provided only to instructors in the Instructor Answer Guide via the Instructor Resources page.

Additional Resources

Student and Instructor Resources

We’ve compiled additional resources for both students and instructors, including Getting Started Guides, manipulative mathematics worksheets, and an answer guide to the section review exercises. Instructor resources require a verified instructor account, which can be requested on your log-in. Take advantage of these resources to supplement your OpenStax book.

Partner Resources

OpenStax partners are our allies in the mission to make high-quality learning materials affordable and accessible to students and instructors everywhere. Their tools integrate seamlessly with our OpenStax titles at a low cost. To access the partner resources for your text, visit your book page on

About the Authors

Senior Contributing Authors

Lynn Marecek, Santa Ana College

Andrea Honeycutt Mathis, Northeast Mississippi Community College


Shaun Ault, Valdosta State University
Brandie Biddy, Cecil College
Kimberlyn Brooks, Cuyahoga Community College
Michael Cohen, Hofstra University
Robert Diaz, Fullerton College
Dianne Hendrickson, Becker College
Linda Hunt, Shawnee State University
Stephanie Krehl, Mid-South Community College
Yixia Lu, South Suburban College
Teresa Richards, Butte-Glenn College
Christian Roldán- Johnson, College of Lake County Community College
Yvonne Sandoval, El Camino College
Gowribalan Vamadeva, University of Cincinnati Blue Ash College
Kim Watts, North Lake college
Libby Watts, Tidewater Community College
Matthew Watts, Tidewater Community College

Order a print copy

As an Amazon Associate we earn from qualifying purchases.


This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at
Citation information

© Jan 23, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.