### Practice Test

In the following exercises, simplify using absolute values as necessary.

$\sqrt{169{x}^{8}{y}^{6}}$

$\sqrt{\frac{45{x}^{3}{y}^{4}}{180{x}^{5}{y}^{2}}}$

In the following exercises, simplify. Assume all variables are positive.

$\sqrt{\mathrm{-45}}$

${\left(\frac{8\text{}{x}^{\frac{2}{3}}\text{}{y}^{-\frac{5}{2}}}{{x}^{-\frac{7}{3}}{y}^{\frac{1}{2}}}\right)}^{\frac{1}{3}}$

$\sqrt{27{x}^{2}}-4x\sqrt{12}+\sqrt{108{x}^{2}}$

$\sqrt[3]{4}\left(\sqrt[3]{16}-\sqrt[3]{6}\right)$

$\frac{\sqrt[3]{128}}{\sqrt[3]{54}}$

$\frac{1}{\sqrt[3]{5}}$

$\sqrt{\mathrm{-4}}\xb7\sqrt{\mathrm{-9}}$

$\frac{4+i}{3-2i}$

In the following exercises, solve.

$\sqrt{2x+5}+8=6$

$\sqrt[3]{2{x}^{2}-6x-23}=\sqrt[3]{{x}^{2}-3x+5}$

In the following exercise, ⓐ find the domain of the function ⓑ graph the function ⓒ use the graph to determine the range.