Intermediate Algebra 2e

# Practice Test

### Practice Test

487.

For the polynomial $8y4−3y2+18y4−3y2+1$

Is it a monomial, binomial, or trinomial? What is its degree?

488.

$( 5 a 2 + 2 a − 12 ) ( 9 a 2 + 8 a − 4 ) ( 5 a 2 + 2 a − 12 ) ( 9 a 2 + 8 a − 4 )$

489.

$( 10 x 2 − 3 x + 5 ) − ( 4 x 2 − 6 ) ( 10 x 2 − 3 x + 5 ) − ( 4 x 2 − 6 )$

490.

$( − 3 4 ) 3 ( − 3 4 ) 3$

491.

$x −3 x 4 x −3 x 4$

492.

$5 6 5 8 5 6 5 8$

493.

$( 47 a 18 b 23 c 5 ) 0 ( 47 a 18 b 23 c 5 ) 0$

494.

$4 −1 4 −1$

495.

$( 2 y ) −3 ( 2 y ) −3$

496.

$p −3 · p −8 p −3 · p −8$

497.

$x 4 x −5 x 4 x −5$

498.

$( 3 x −3 ) 2 ( 3 x −3 ) 2$

499.

$24 r 3 s 6 r 2 s 7 24 r 3 s 6 r 2 s 7$

500.

$( x 4 y 9 x −3 ) 2 ( x 4 y 9 x −3 ) 2$

501.

$( 8 x y 3 ) ( −6 x 4 y 6 ) ( 8 x y 3 ) ( −6 x 4 y 6 )$

502.

$4 u ( u 2 − 9 u + 1 ) 4 u ( u 2 − 9 u + 1 )$

503.

$( m + 3 ) ( 7 m − 2 ) ( m + 3 ) ( 7 m − 2 )$

504.

$( n − 8 ) ( n 2 − 4 n + 11 ) ( n − 8 ) ( n 2 − 4 n + 11 )$

505.

$( 4 x − 3 ) 2 ( 4 x − 3 ) 2$

506.

$( 5 x + 2 y ) ( 5 x − 2 y ) ( 5 x + 2 y ) ( 5 x − 2 y )$

507.

$( 15 x y 3 − 35 x 2 y ) ÷ 5 x y ( 15 x y 3 − 35 x 2 y ) ÷ 5 x y$

508.

$( 3 x 3 − 10 x 2 + 7 x + 10 ) ÷ ( 3 x + 2 ) ( 3 x 3 − 10 x 2 + 7 x + 10 ) ÷ ( 3 x + 2 )$

509.

Use the Factor Theorem to determine if $x+3x+3$ a factor of $x3+8x2+21x+18.x3+8x2+21x+18.$

510.

Convert 112,000 to scientific notation. Convert $5.25×10−45.25×10−4$ to decimal form.

In the following exercises, simplify and write your answer in exponential notation.

511.

$( 2.4 × 10 8 ) ( 2 × 10 −5 ) ( 2.4 × 10 8 ) ( 2 × 10 −5 )$

512.

$9 × 10 4 3 × 10 −1 9 × 10 4 3 × 10 −1$

513.

For the function $f(x)=6x2−3x−9f(x)=6x2−3x−9$ find:
$f(3)f(3)$ $f(−2)f(−2)$ $f(0)f(0)$

514.

For $f(x)=2x2−3x−5f(x)=2x2−3x−5$ and $g(x)=3x2−4x+1,g(x)=3x2−4x+1,$ find
$(f+g)(x)(f+g)(x)$ $(f+g)(1)(f+g)(1)$
$(f−g)(x)(f−g)(x)$ $(f−g)(−2)(f−g)(−2)$

515.

For functions
$f(x)=3x2−23x−36f(x)=3x2−23x−36$ and
$g(x)=x−9,g(x)=x−9,$ find
$(fg)(x)(fg)(x)$ $(fg)(3)(fg)(3)$

516.

A hiker drops a pebble from a bridge 240 feet above a canyon. The function $h(t)=−16t2+240h(t)=−16t2+240$ gives the height of the pebble $tt$ seconds after it was dropped. Find the height when $t=3.t=3.$

Order a print copy

As an Amazon Associate we earn from qualifying purchases.