Skip to Content
OpenStax Logo
Intermediate Algebra 2e

4.7 Graphing Systems of Linear Inequalities

Intermediate Algebra 2e4.7 Graphing Systems of Linear Inequalities
  1. Preface
  2. 1 Foundations
    1. Introduction
    2. 1.1 Use the Language of Algebra
    3. 1.2 Integers
    4. 1.3 Fractions
    5. 1.4 Decimals
    6. 1.5 Properties of Real Numbers
    7. Key Terms
    8. Key Concepts
    9. Exercises
      1. Review Exercises
      2. Practice Test
  3. 2 Solving Linear Equations
    1. Introduction
    2. 2.1 Use a General Strategy to Solve Linear Equations
    3. 2.2 Use a Problem Solving Strategy
    4. 2.3 Solve a Formula for a Specific Variable
    5. 2.4 Solve Mixture and Uniform Motion Applications
    6. 2.5 Solve Linear Inequalities
    7. 2.6 Solve Compound Inequalities
    8. 2.7 Solve Absolute Value Inequalities
    9. Key Terms
    10. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  4. 3 Graphs and Functions
    1. Introduction
    2. 3.1 Graph Linear Equations in Two Variables
    3. 3.2 Slope of a Line
    4. 3.3 Find the Equation of a Line
    5. 3.4 Graph Linear Inequalities in Two Variables
    6. 3.5 Relations and Functions
    7. 3.6 Graphs of Functions
    8. Key Terms
    9. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  5. 4 Systems of Linear Equations
    1. Introduction
    2. 4.1 Solve Systems of Linear Equations with Two Variables
    3. 4.2 Solve Applications with Systems of Equations
    4. 4.3 Solve Mixture Applications with Systems of Equations
    5. 4.4 Solve Systems of Equations with Three Variables
    6. 4.5 Solve Systems of Equations Using Matrices
    7. 4.6 Solve Systems of Equations Using Determinants
    8. 4.7 Graphing Systems of Linear Inequalities
    9. Key Terms
    10. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  6. 5 Polynomials and Polynomial Functions
    1. Introduction
    2. 5.1 Add and Subtract Polynomials
    3. 5.2 Properties of Exponents and Scientific Notation
    4. 5.3 Multiply Polynomials
    5. 5.4 Dividing Polynomials
    6. Key Terms
    7. Key Concepts
    8. Exercises
      1. Review Exercises
      2. Practice Test
  7. 6 Factoring
    1. Introduction to Factoring
    2. 6.1 Greatest Common Factor and Factor by Grouping
    3. 6.2 Factor Trinomials
    4. 6.3 Factor Special Products
    5. 6.4 General Strategy for Factoring Polynomials
    6. 6.5 Polynomial Equations
    7. Key Terms
    8. Key Concepts
    9. Exercises
      1. Review Exercises
      2. Practice Test
  8. 7 Rational Expressions and Functions
    1. Introduction
    2. 7.1 Multiply and Divide Rational Expressions
    3. 7.2 Add and Subtract Rational Expressions
    4. 7.3 Simplify Complex Rational Expressions
    5. 7.4 Solve Rational Equations
    6. 7.5 Solve Applications with Rational Equations
    7. 7.6 Solve Rational Inequalities
    8. Key Terms
    9. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  9. 8 Roots and Radicals
    1. Introduction
    2. 8.1 Simplify Expressions with Roots
    3. 8.2 Simplify Radical Expressions
    4. 8.3 Simplify Rational Exponents
    5. 8.4 Add, Subtract, and Multiply Radical Expressions
    6. 8.5 Divide Radical Expressions
    7. 8.6 Solve Radical Equations
    8. 8.7 Use Radicals in Functions
    9. 8.8 Use the Complex Number System
    10. Key Terms
    11. Key Concepts
    12. Exercises
      1. Review Exercises
      2. Practice Test
  10. 9 Quadratic Equations and Functions
    1. Introduction
    2. 9.1 Solve Quadratic Equations Using the Square Root Property
    3. 9.2 Solve Quadratic Equations by Completing the Square
    4. 9.3 Solve Quadratic Equations Using the Quadratic Formula
    5. 9.4 Solve Quadratic Equations in Quadratic Form
    6. 9.5 Solve Applications of Quadratic Equations
    7. 9.6 Graph Quadratic Functions Using Properties
    8. 9.7 Graph Quadratic Functions Using Transformations
    9. 9.8 Solve Quadratic Inequalities
    10. Key Terms
    11. Key Concepts
    12. Exercises
      1. Review Exercises
      2. Practice Test
  11. 10 Exponential and Logarithmic Functions
    1. Introduction
    2. 10.1 Finding Composite and Inverse Functions
    3. 10.2 Evaluate and Graph Exponential Functions
    4. 10.3 Evaluate and Graph Logarithmic Functions
    5. 10.4 Use the Properties of Logarithms
    6. 10.5 Solve Exponential and Logarithmic Equations
    7. Key Terms
    8. Key Concepts
    9. Exercises
      1. Review Exercises
      2. Practice Test
  12. 11 Conics
    1. Introduction
    2. 11.1 Distance and Midpoint Formulas; Circles
    3. 11.2 Parabolas
    4. 11.3 Ellipses
    5. 11.4 Hyperbolas
    6. 11.5 Solve Systems of Nonlinear Equations
    7. Key Terms
    8. Key Concepts
    9. Exercises
      1. Review Exercises
      2. Practice Test
  13. 12 Sequences, Series and Binomial Theorem
    1. Introduction
    2. 12.1 Sequences
    3. 12.2 Arithmetic Sequences
    4. 12.3 Geometric Sequences and Series
    5. 12.4 Binomial Theorem
    6. Key Terms
    7. Key Concepts
    8. Exercises
      1. Review Exercises
      2. Practice Test
  14. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
    11. Chapter 11
    12. Chapter 12
  15. Index

Learning Objectives

By the end of this section, you will be able to:
  • Determine whether an ordered pair is a solution of a system of linear inequalities
  • Solve a system of linear inequalities by graphing
  • Solve applications of systems of inequalities
Be Prepared 4.19

Before you get started, take this readiness quiz.

Solve the inequality 2a<5a+12.2a<5a+12.
If you missed this problem, review Example 2.52.

Be Prepared 4.20

Determine whether the ordered pair (3,12)(3,12) is a solution to the system y>2x+3.y>2x+3.
If you missed this problem, review Example 3.34.

Determine whether an ordered pair is a solution of a system of linear inequalities

The definition of a system of linear inequalities is very similar to the definition of a system of linear equations.

System of Linear Inequalities

Two or more linear inequalities grouped together form a system of linear inequalities.

A system of linear inequalities looks like a system of linear equations, but it has inequalities instead of equations. A system of two linear inequalities is shown here.

{x+4y103x2y<12{x+4y103x2y<12

To solve a system of linear inequalities, we will find values of the variables that are solutions to both inequalities. We solve the system by using the graphs of each inequality and show the solution as a graph. We will find the region on the plane that contains all ordered pairs (x,y)(x,y) that make both inequalities true.

Solutions of a System of Linear Inequalities

Solutions of a system of linear inequalities are the values of the variables that make all the inequalities true.

The solution of a system of linear inequalities is shown as a shaded region in the x, y coordinate system that includes all the points whose ordered pairs make the inequalities true.

To determine if an ordered pair is a solution to a system of two inequalities, we substitute the values of the variables into each inequality. If the ordered pair makes both inequalities true, it is a solution to the system.

Example 4.53

Determine whether the ordered pair is a solution to the system {x+4y103x2y<12.{x+4y103x2y<12.

(−2,4)(−2,4) (3,1)(3,1)

Try It 4.105

Determine whether the ordered pair is a solution to the system: {x5y>102x+3y>−2.{x5y>102x+3y>−2.

(3,−1)(3,−1) (6,−3)(6,−3)

Try It 4.106

Determine whether the ordered pair is a solution to the system: {y>4x24xy<20.{y>4x24xy<20.

(−2,1)(−2,1) (4,−1)(4,−1)

Solve a System of Linear Inequalities by Graphing

The solution to a single linear inequality is the region on one side of the boundary line that contains all the points that make the inequality true. The solution to a system of two linear inequalities is a region that contains the solutions to both inequalities. To find this region, we will graph each inequality separately and then locate the region where they are both true. The solution is always shown as a graph.

Example 4.54 How to Solve a System of Linear Inequalities by Graphing

Solve the system by graphing: {y2x1y<x+1.{y2x1y<x+1.

Try It 4.107

Solve the system by graphing: {y<3x+2y>x1.{y<3x+2y>x1.

Try It 4.108

Solve the system by graphing: {y<12x+3y<3x4.{y<12x+3y<3x4.

How To

Solve a system of linear inequalities by graphing.

  1. Step 1. Graph the first inequality.
    • Graph the boundary line.
    • Shade in the side of the boundary line where the inequality is true.
  2. Step 2. On the same grid, graph the second inequality.
    • Graph the boundary line.
    • Shade in the side of that boundary line where the inequality is true.
  3. Step 3. The solution is the region where the shading overlaps.
  4. Step 4. Check by choosing a test point.

Example 4.55

Solve the system by graphing: {xy>3y<15x+4.{xy>3y<15x+4.

Try It 4.109

Solve the system by graphing: {x+y2y23x1.{x+y2y23x1.

Try It 4.110

Solve the system by graphing: {3x2y6y>14x+5.{3x2y6y>14x+5.

Example 4.56

Solve the system by graphing: {x2y<5y>−4.{x2y<5y>−4.

Try It 4.111

Solve the system by graphing: {y3x2y<1.{y3x2y<1.

Try It 4.112

Solve the system by graphing: {x>−4x2y−4.{x>−4x2y−4.

Systems of linear inequalities where the boundary lines are parallel might have no solution. We’ll see this in the next example.

Example 4.57

Solve the system by graphing: {4x+3y12y<43x+1.{4x+3y12y<43x+1.

Try It 4.113

Solve the system by graphing: {3x2y12y32x+1.{3x2y12y32x+1.

Try It 4.114

Solve the system by graphing: {x+3y>8y<13x2.{x+3y>8y<13x2.

Some systems of linear inequalities where the boundary lines are parallel will have a solution. We’ll see this in the next example.

Example 4.58

Solve the system by graphing: {y>12x4x2y<−4.{y>12x4x2y<−4.

Try It 4.115

Solve the system by graphing: {y3x+1−3x+y−4.{y3x+1−3x+y−4.

Try It 4.116

Solve the system by graphing: {y14x+2x+4y4.{y14x+2x+4y4.

Solve Applications of Systems of Inequalities

The first thing we’ll need to do to solve applications of systems of inequalities is to translate each condition into an inequality. Then we graph the system, as we did above, to see the region that contains the solutions. Many situations will be realistic only if both variables are positive, so we add inequalities to the system as additional requirements.

Example 4.59

Christy sells her photographs at a booth at a street fair. At the start of the day, she wants to have at least 25 photos to display at her booth. Each small photo she displays costs her $4 and each large photo costs her $10. She doesn’t want to spend more than $200 on photos to display.

Write a system of inequalities to model this situation.
Graph the system.
Could she display 10 small and 20 large photos?
Could she display 20 large and 10 small photos?

Try It 4.117

A trailer can carry a maximum weight of 160 pounds and a maximum volume of 15 cubic feet. A microwave oven weighs 30 pounds and has 2 cubic feet of volume, while a printer weighs 20 pounds and has 3 cubic feet of space.

Write a system of inequalities to model this situation.
Graph the system.
Could 4 microwaves and 2 printers be carried on this trailer?
Could 7 microwaves and 3 printers be carried on this trailer?

Try It 4.118

Mary needs to purchase supplies of answer sheets and pencils for a standardized test to be given to the juniors at her high school. The number of the answer sheets needed is at least 5 more than the number of pencils. The pencils cost $2 and the answer sheets cost $1. Mary’s budget for these supplies allows for a maximum cost of $400.

Write a system of inequalities to model this situation.
Graph the system.
Could Mary purchase 100 pencils and 100 answer sheets?
Could Mary purchase 150 pencils and 150 answer sheets?

When we use variables other than x and y to define an unknown quantity, we must change the names of the axes of the graph as well.

Example 4.60

Omar needs to eat at least 800 calories before going to his team practice. All he wants is hamburgers and cookies, and he doesn’t want to spend more than $5. At the hamburger restaurant near his college, each hamburger has 240 calories and costs $1.40. Each cookie has 160 calories and costs $0.50.

Write a system of inequalities to model this situation.
Graph the system.
Could he eat 3 hamburgers and 1 cookie?
Could he eat 2 hamburgers and 4 cookies?

Try It 4.119

Tension needs to eat at least an extra 1,000 calories a day to prepare for running a marathon. He has only $25 to spend on the extra food he needs and will spend it on $0.75 donuts which have 360 calories each and $2 energy drinks which have 110 calories.

Write a system of inequalities that models this situation.
Graph the system.
Can he buy 8 donuts and 4 energy drinks and satisfy his caloric needs?
Can he buy 1 donut and 3 energy drinks and satisfy his caloric needs?

Try It 4.120

Philip’s doctor tells him he should add at least 1,000 more calories per day to his usual diet. Philip wants to buy protein bars that cost $1.80 each and have 140 calories and juice that costs $1.25 per bottle and have 125 calories. He doesn’t want to spend more than $12.

Write a system of inequalities that models this situation.
Graph the system.
Can he buy 3 protein bars and 5 bottles of juice?
Can he buy 5 protein bars and 3 bottles of juice?

Media Access Additional Online Resources

Access these online resources for additional instruction and practice with solving systems of linear inequalities by graphing.

Section 4.7 Exercises

Practice Makes Perfect

Determine Whether an Ordered Pair is a Solution of a System of Linear Inequalities

In the following exercises, determine whether each ordered pair is a solution to the system.

280.

{3x+y>52xy10{3x+y>52xy10

(3,−3)(3,−3) (7,1)(7,1)

281.

{4xy<10−2x+2y>−8{4xy<10−2x+2y>−8

(5,−2)(5,−2) (−1,3)(−1,3)

282.

{y>23x5x+12y4{y>23x5x+12y4

(6, −4)(6, −4) (3, 0)(3, 0)

283.

{y<32x+334x2y<5{y<32x+334x2y<5

(−4,−1)(−4,−1) (8, 3)(8, 3)

284.

{7x+2y>145xy8{7x+2y>145xy8

(2, 3)(2, 3) (7, −1)(7, −1)

285.

{6x5y<20−2x+7y>−8{6x5y<20−2x+7y>−8

(1, −3)(1, −3) (−4, 4)(−4, 4)

Solve a System of Linear Inequalities by Graphing

In the following exercises, solve each system by graphing.

286.

{y3x+2y>x1{y3x+2y>x1

287.

{y<2x+2yx1{y<2x+2yx1

288.

{y<2x1y12x+4{y<2x1y12x+4

289.

{y23x+2y>2x3{y23x+2y>2x3

290.

xy>1y<14x+3xy>1y<14x+3

291.

{x+2y<4y<x2{x+2y<4y<x2

292.

{3xy6y12x{3xy6y12x

293.

{2x+4y8y34x{2x+4y8y34x

294.

{2x5y<103x+4y12{2x5y<103x+4y12

295.

{3x2y6−4x2y>8{3x2y6−4x2y>8

296.

{2x+2y>−4x+3y9{2x+2y>−4x+3y9

297.

{2x+y>−6x+2y−4{2x+y>−6x+2y−4

298.

{x2y<3y1{x2y<3y1

299.

{x3y>4y1{x3y>4y1

300.

{y12x3x2{y12x3x2

301.

{y23x+5x3{y23x+5x3

302.

{y34x2y<2{y34x2y<2

303.

{y12x+3y<1{y12x+3y<1

304.

{3x4y<8x<1{3x4y<8x<1

305.

{−3x+5y>10x>−1{−3x+5y>10x>−1

306.

{x3y2{x3y2

307.

{x−1y3{x−1y3

308.

{2x+4y>4y12x2{2x+4y>4y12x2

309.

{x3y6y>13x+1{x3y6y>13x+1

310.

{−2x+6y<06y>2x+4{−2x+6y<06y>2x+4

311.

{−3x+6y>124y2x4{−3x+6y>124y2x4

312.

{y−3x+23x+y>5{y−3x+23x+y>5

313.

{y12x1−2x+4y4{y12x1−2x+4y4

314.

{y14x2x+4y<6{y14x2x+4y<6

315.

{y3x1−3x+y>−4{y3x1−3x+y>−4

316.

{3y>x+2−2x+6y>8{3y>x+2−2x+6y>8

317.

{y<34x2−3x+4y<7{y<34x2−3x+4y<7

Solve Applications of Systems of Inequalities

In the following exercises, translate to a system of inequalities and solve.

318.

Caitlyn sells her drawings at the county fair. She wants to sell at least 60 drawings and has portraits and landscapes. She sells the portraits for $15 and the landscapes for $10. She needs to sell at least $800 worth of drawings in order to earn a profit.

Write a system of inequalities to model this situation.
Graph the system.
Will she make a profit if she sells 20 portraits and 35 landscapes?
Will she make a profit if she sells 50 portraits and 20 landscapes?

319.

Jake does not want to spend more than $50 on bags of fertilizer and peat moss for his garden. Fertilizer costs $2 a bag and peat moss costs $5 a bag. Jake’s van can hold at most 20 bags.

Write a system of inequalities to model this situation.
Graph the system.
Can he buy 15 bags of fertilizer and 4 bags of peat moss?
Can he buy 10 bags of fertilizer and 10 bags of peat moss?

320.

Reiko needs to mail her Christmas cards and packages and wants to keep her mailing costs to no more than $500. The number of cards is at least 4 more than twice the number of packages. The cost of mailing a card (with pictures enclosed) is $3 and for a package the cost is $7.

Write a system of inequalities to model this situation.
Graph the system.
Can she mail 60 cards and 26 packages?
Can she mail 90 cards and 40 packages?

321.

Juan is studying for his final exams in chemistry and algebra. he knows he only has 24 hours to study, and it will take him at least three times as long to study for algebra than chemistry.

Write a system of inequalities to model this situation.
Graph the system.
Can he spend 4 hours on chemistry and 20 hours on algebra?
Can he spend 6 hours on chemistry and 18 hours on algebra?

322.

Jocelyn is pregnant and so she needs to eat at least 500 more calories a day than usual. When buying groceries one day with a budget of $15 for the extra food, she buys bananas that have 90 calories each and chocolate granola bars that have 150 calories each. The bananas cost $0.35 each and the granola bars cost $2.50 each.

Write a system of inequalities to model this situation.
Graph the system.
Could she buy 5 bananas and 6 granola bars?
Could she buy 3 bananas and 4 granola bars?

323.

Mark is attempting to build muscle mass and so he needs to eat at least an additional 80 grams of protein a day. A bottle of protein water costs $3.20 and a protein bar costs $1.75. The protein water supplies 27 grams of protein and the bar supplies 16 gram. If he has $10 dollars to spend

Write a system of inequalities to model this situation.
Graph the system.
Could he buy 3 bottles of protein water and 1 protein bar?
Could he buy no bottles of protein water and 5 protein bars?

324.

Jocelyn desires to increase both her protein consumption and caloric intake. She desires to have at least 35 more grams of protein each day and no more than an additional 200 calories daily. An ounce of cheddar cheese has 7 grams of protein and 110 calories. An ounce of parmesan cheese has 11 grams of protein and 22 calories.

Write a system of inequalities to model this situation.
Graph the system.
Could she eat 1 ounce of cheddar cheese and 3 ounces of parmesan cheese?
Could she eat 2 ounces of cheddar cheese and 1 ounce of parmesan cheese?

325.

Mark is increasing his exercise routine by running and walking at least 4 miles each day. His goal is to burn a minimum of 1500 calories from this exercise. Walking burns 270 calories/mile and running burns 650 calories.

Write a system of inequalities to model this situation.
Graph the system.
Could he meet his goal by walking 3 miles and running 1 mile?
Could he his goal by walking 2 miles and running 2 mile

Writing Exercises

326.

Graph the inequality xy3.xy3. How do you know which side of the line xy=3xy=3 should be shaded?

327.

Graph the system {x+2y6y12x4.{x+2y6y12x4. What does the solution mean?

Self Check

After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

The figure shows a table with four columns and four rows. The first row is the title row. The four titles are I can…, confidently, with some help and No – I don’t get it! In the second row of the first column, the text says ‘determine whether an ordered pair is a solution of a system of linear inequalities.’ In the third row of the first column, the text says ‘solve applications of systems of inequalities.’

What does this checklist tell you about your mastery of this section? What steps will you take to improve?

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/intermediate-algebra-2e/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/intermediate-algebra-2e/pages/1-introduction
Citation information

© Apr 15, 2020 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.