Skip to Content
OpenStax Logo
Elementary Algebra

5.4 Solve Applications with Systems of Equations

Elementary Algebra5.4 Solve Applications with Systems of Equations
  1. Preface
  2. 1 Foundations
    1. Introduction
    2. 1.1 Introduction to Whole Numbers
    3. 1.2 Use the Language of Algebra
    4. 1.3 Add and Subtract Integers
    5. 1.4 Multiply and Divide Integers
    6. 1.5 Visualize Fractions
    7. 1.6 Add and Subtract Fractions
    8. 1.7 Decimals
    9. 1.8 The Real Numbers
    10. 1.9 Properties of Real Numbers
    11. 1.10 Systems of Measurement
    12. Key Terms
    13. Key Concepts
    14. Exercises
      1. Review Exercises
      2. Practice Test
  3. 2 Solving Linear Equations and Inequalities
    1. Introduction
    2. 2.1 Solve Equations Using the Subtraction and Addition Properties of Equality
    3. 2.2 Solve Equations using the Division and Multiplication Properties of Equality
    4. 2.3 Solve Equations with Variables and Constants on Both Sides
    5. 2.4 Use a General Strategy to Solve Linear Equations
    6. 2.5 Solve Equations with Fractions or Decimals
    7. 2.6 Solve a Formula for a Specific Variable
    8. 2.7 Solve Linear Inequalities
    9. Key Terms
    10. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  4. 3 Math Models
    1. Introduction
    2. 3.1 Use a Problem-Solving Strategy
    3. 3.2 Solve Percent Applications
    4. 3.3 Solve Mixture Applications
    5. 3.4 Solve Geometry Applications: Triangles, Rectangles, and the Pythagorean Theorem
    6. 3.5 Solve Uniform Motion Applications
    7. 3.6 Solve Applications with Linear Inequalities
    8. Key Terms
    9. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  5. 4 Graphs
    1. Introduction
    2. 4.1 Use the Rectangular Coordinate System
    3. 4.2 Graph Linear Equations in Two Variables
    4. 4.3 Graph with Intercepts
    5. 4.4 Understand Slope of a Line
    6. 4.5 Use the Slope–Intercept Form of an Equation of a Line
    7. 4.6 Find the Equation of a Line
    8. 4.7 Graphs of Linear Inequalities
    9. Key Terms
    10. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  6. 5 Systems of Linear Equations
    1. Introduction
    2. 5.1 Solve Systems of Equations by Graphing
    3. 5.2 Solve Systems of Equations by Substitution
    4. 5.3 Solve Systems of Equations by Elimination
    5. 5.4 Solve Applications with Systems of Equations
    6. 5.5 Solve Mixture Applications with Systems of Equations
    7. 5.6 Graphing Systems of Linear Inequalities
    8. Key Terms
    9. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  7. 6 Polynomials
    1. Introduction
    2. 6.1 Add and Subtract Polynomials
    3. 6.2 Use Multiplication Properties of Exponents
    4. 6.3 Multiply Polynomials
    5. 6.4 Special Products
    6. 6.5 Divide Monomials
    7. 6.6 Divide Polynomials
    8. 6.7 Integer Exponents and Scientific Notation
    9. Key Terms
    10. Key Concepts
    11. Exercises
      1. Review Exercises
      2. Practice Test
  8. 7 Factoring
    1. Introduction
    2. 7.1 Greatest Common Factor and Factor by Grouping
    3. 7.2 Factor Quadratic Trinomials with Leading Coefficient 1
    4. 7.3 Factor Quadratic Trinomials with Leading Coefficient Other than 1
    5. 7.4 Factor Special Products
    6. 7.5 General Strategy for Factoring Polynomials
    7. 7.6 Quadratic Equations
    8. Key Terms
    9. Key Concepts
    10. Exercises
      1. Review Exercises
      2. Practice Test
  9. 8 Rational Expressions and Equations
    1. Introduction
    2. 8.1 Simplify Rational Expressions
    3. 8.2 Multiply and Divide Rational Expressions
    4. 8.3 Add and Subtract Rational Expressions with a Common Denominator
    5. 8.4 Add and Subtract Rational Expressions with Unlike Denominators
    6. 8.5 Simplify Complex Rational Expressions
    7. 8.6 Solve Rational Equations
    8. 8.7 Solve Proportion and Similar Figure Applications
    9. 8.8 Solve Uniform Motion and Work Applications
    10. 8.9 Use Direct and Inverse Variation
    11. Key Terms
    12. Key Concepts
    13. Exercises
      1. Review Exercises
      2. Practice Test
  10. 9 Roots and Radicals
    1. Introduction
    2. 9.1 Simplify and Use Square Roots
    3. 9.2 Simplify Square Roots
    4. 9.3 Add and Subtract Square Roots
    5. 9.4 Multiply Square Roots
    6. 9.5 Divide Square Roots
    7. 9.6 Solve Equations with Square Roots
    8. 9.7 Higher Roots
    9. 9.8 Rational Exponents
    10. Key Terms
    11. Key Concepts
    12. Exercises
      1. Review Exercises
      2. Practice Test
  11. 10 Quadratic Equations
    1. Introduction
    2. 10.1 Solve Quadratic Equations Using the Square Root Property
    3. 10.2 Solve Quadratic Equations by Completing the Square
    4. 10.3 Solve Quadratic Equations Using the Quadratic Formula
    5. 10.4 Solve Applications Modeled by Quadratic Equations
    6. 10.5 Graphing Quadratic Equations
    7. Key Terms
    8. Key Concepts
    9. Exercises
      1. Review Exercises
      2. Practice Test
  12. Answer Key
    1. Chapter 1
    2. Chapter 2
    3. Chapter 3
    4. Chapter 4
    5. Chapter 5
    6. Chapter 6
    7. Chapter 7
    8. Chapter 8
    9. Chapter 9
    10. Chapter 10
  13. Index

Learning Objectives

By the end of this section, you will be able to:

  • Translate to a system of equations
  • Solve direct translation applications
  • Solve geometry applications
  • Solve uniform motion applications
Be Prepared 5.4

Before you get started, take this readiness quiz.

  1. The sum of twice a number and nine is 31. Find the number.
    If you missed this problem, review Example 3.4.
  2. Twins Jon and Ron together earned $96,000 last year. Ron earned $8,000 more than three times what Jon earned. How much did each of the twins earn?
    If you missed this problem, review Example 3.11.
  3. Alessio rides his bike 312312 hours at a rate of 10 miles per hour. How far did he ride?
    If you missed this problem, review Example 2.58.

Previously in this chapter we solved several applications with systems of linear equations. In this section, we’ll look at some specific types of applications that relate two quantities. We’ll translate the words into linear equations, decide which is the most convenient method to use, and then solve them.

We will use our Problem Solving Strategy for Systems of Linear Equations.

How To

Use a problem solving strategy for systems of linear equations.

  1. Step 1. Read the problem. Make sure all the words and ideas are understood.
  2. Step 2. Identify what we are looking for.
  3. Step 3. Name what we are looking for. Choose variables to represent those quantities.
  4. Step 4. Translate into a system of equations.
  5. Step 5. Solve the system of equations using good algebra techniques.
  6. Step 6. Check the answer in the problem and make sure it makes sense.
  7. Step 7. Answer the question with a complete sentence.

Translate to a System of Equations

Many of the problems we solved in earlier applications related two quantities. Here are two of the examples from the chapter on Math Models.

  • The sum of two numbers is negative fourteen. One number is four less than the other. Find the numbers.
  • A married couple together earns $110,000 a year. The wife earns $16,000 less than twice what her husband earns. What does the husband earn?

In that chapter we translated each situation into one equation using only one variable. Sometimes it was a bit of a challenge figuring out how to name the two quantities, wasn’t it?

Let’s see how we can translate these two problems into a system of equations with two variables. We’ll focus on Steps 1 through 4 of our Problem Solving Strategy.

Example 5.35

How to Translate to a System of Equations

Translate to a system of equations:

The sum of two numbers is negative fourteen. One number is four less than the other. Find the numbers.

Try It 5.69

Translate to a system of equations:

The sum of two numbers is negative twenty-three. One number is 7 less than the other. Find the numbers.

Try It 5.70

Translate to a system of equations:

The sum of two numbers is negative eighteen. One number is 40 more than the other. Find the numbers.

We’ll do another example where we stop after we write the system of equations.

Example 5.36

Translate to a system of equations:

A married couple together earns $110,000 a year. The wife earns $16,000 less than twice what her husband earns. What does the husband earn?

Try It 5.71

Translate to a system of equations:

A couple has a total household income of $84,000. The husband earns $18,000 less than twice what the wife earns. How much does the wife earn?

Try It 5.72

Translate to a system of equations:

A senior employee makes $5 less than twice what a new employee makes per hour. Together they make $43 per hour. How much does each employee make per hour?

Solve Direct Translation Applications

We set up, but did not solve, the systems of equations in Example 5.35 and Example 5.36 Now we’ll translate a situation to a system of equations and then solve it.

Example 5.37

Translate to a system of equations and then solve:

Devon is 26 years older than his son Cooper. The sum of their ages is 50. Find their ages.

Try It 5.73

Translate to a system of equations and then solve:

Ali is 12 years older than his youngest sister, Jameela. The sum of their ages is 40. Find their ages.

Try It 5.74

Translate to a system of equations and then solve:

Jake’s dad is 6 more than 3 times Jake’s age. The sum of their ages is 42. Find their ages.

Example 5.38

Translate to a system of equations and then solve:

When Jenna spent 10 minutes on the elliptical trainer and then did circuit training for 20 minutes, her fitness app says she burned 278 calories. When she spent 20 minutes on the elliptical trainer and 30 minutes circuit training she burned 473 calories. How many calories does she burn for each minute on the elliptical trainer? How many calories does she burn for each minute of circuit training?

Try It 5.75

Translate to a system of equations and then solve:

Mark went to the gym and did 40 minutes of Bikram hot yoga and 10 minutes of jumping jacks. He burned 510 calories. The next time he went to the gym, he did 30 minutes of Bikram hot yoga and 20 minutes of jumping jacks burning 470 calories. How many calories were burned for each minute of yoga? How many calories were burned for each minute of jumping jacks?

Try It 5.76

Translate to a system of equations and then solve:

Erin spent 30 minutes on the rowing machine and 20 minutes lifting weights at the gym and burned 430 calories. During her next visit to the gym she spent 50 minutes on the rowing machine and 10 minutes lifting weights and burned 600 calories. How many calories did she burn for each minutes on the rowing machine? How many calories did she burn for each minute of weight lifting?

Solve Geometry Applications

When we learned about Math Models, we solved geometry applications using properties of triangles and rectangles. Now we’ll add to our list some properties of angles.

The measures of two complementary angles add to 90 degrees. The measures of two supplementary angles add to 180 degrees.

Complementary and Supplementary Angles

Two angles are complementary if the sum of the measures of their angles is 90 degrees.

Two angles are supplementary if the sum of the measures of their angles is 180 degrees.

If two angles are complementary, we say that one angle is the complement of the other.

If two angles are supplementary, we say that one angle is the supplement of the other.

Example 5.39

Translate to a system of equations and then solve:

The difference of two complementary angles is 26 degrees. Find the measures of the angles.

Try It 5.77

Translate to a system of equations and then solve:

The difference of two complementary angles is 20 degrees. Find the measures of the angles.

Try It 5.78

Translate to a system of equations and then solve:

The difference of two complementary angles is 80 degrees. Find the measures of the angles.

Example 5.40

Translate to a system of equations and then solve:

Two angles are supplementary. The measure of the larger angle is twelve degrees less than five times the measure of the smaller angle. Find the measures of both angles.

Try It 5.79

Translate to a system of equations and then solve:

Two angles are supplementary. The measure of the larger angle is 12 degrees more than three times the smaller angle. Find the measures of the angles.

Try It 5.80

Translate to a system of equations and then solve:

Two angles are supplementary. The measure of the larger angle is 18 less than twice the measure of the smaller angle. Find the measures of the angles.

Example 5.41

Translate to a system of equations and then solve:

Randall has 125 feet of fencing to enclose the rectangular part of his backyard adjacent to his house. He will only need to fence around three sides, because the fourth side will be the wall of the house. He wants the length of the fenced yard (parallel to the house wall) to be 5 feet more than four times as long as the width. Find the length and the width.

Try It 5.81

Translate to a system of equations and then solve:

Mario wants to put a rectangular fence around the pool in his backyard. Since one side is adjacent to the house, he will only need to fence three sides. There are two long sides and the one shorter side is parallel to the house. He needs 155 feet of fencing to enclose the pool. The length of the long side is 10 feet less than twice the width. Find the length and width of the pool area to be enclosed.

Try It 5.82

Translate to a system of equations and then solve:

Alexis wants to build a rectangular dog run in her yard adjacent to her neighbor’s fence. She will use 136 feet of fencing to completely enclose the rectangular dog run. The length of the dog run along the neighbor’s fence will be 16 feet less than twice the width. Find the length and width of the dog run.

Solve Uniform Motion Applications

We used a table to organize the information in uniform motion problems when we introduced them earlier. We’ll continue using the table here. The basic equation was D = rt where D is the distance travelled, r is the rate, and t is the time.

Our first example of a uniform motion application will be for a situation similar to some we have already seen, but now we can use two variables and two equations.

Example 5.42

Translate to a system of equations and then solve:

Joni left St. Louis on the interstate, driving west towards Denver at a speed of 65 miles per hour. Half an hour later, Kelly left St. Louis on the same route as Joni, driving 78 miles per hour. How long will it take Kelly to catch up to Joni?

Try It 5.83

Translate to a system of equations and then solve: Mitchell left Detroit on the interstate driving south towards Orlando at a speed of 60 miles per hour. Clark left Detroit 1 hour later traveling at a speed of 75 miles per hour, following the same route as Mitchell. How long will it take Clark to catch Mitchell?

Try It 5.84

Translate to a system of equations and then solve: Charlie left his mother’s house traveling at an average speed of 36 miles per hour. His sister Sally left 15 minutes (1/4 hour) later traveling the same route at an average speed of 42 miles per hour. How long before Sally catches up to Charlie?

Many real-world applications of uniform motion arise because of the effects of currents—of water or air—on the actual speed of a vehicle. Cross-country airplane flights in the United States generally take longer going west than going east because of the prevailing wind currents.

Let’s take a look at a boat travelling on a river. Depending on which way the boat is going, the current of the water is either slowing it down or speeding it up.

Figure 5.7 and Figure 5.8 show how a river current affects the speed at which a boat is actually travelling. We’ll call the speed of the boat in still water b and the speed of the river current c.

In Figure 5.7 the boat is going downstream, in the same direction as the river current. The current helps push the boat, so the boat’s actual speed is faster than its speed in still water. The actual speed at which the boat is moving is b + c.

This figure shows a boat floating in water. On the right, there is an arrow pointing towards the boat. It is labeled “c.” On the left, there is an arrow pointing away from the boat. It is labeled “b.”
Figure 5.7

In Figure 5.8 the boat is going upstream, opposite to the river current. The current is going against the boat, so the boat’s actual speed is slower than its speed in still water. The actual speed of the boat is bcbc.

This figure shows a boat floating in water. To the left is an arrow pointing away from the boat labeled “b,” and an arrow pointing towards the boat labeled “c.”
Figure 5.8

We’ll put some numbers to this situation in Example 5.43.

Example 5.43

Translate to a system of equations and then solve:

A river cruise ship sailed 60 miles downstream for 4 hours and then took 5 hours sailing upstream to return to the dock. Find the speed of the ship in still water and the speed of the river current.

Try It 5.85

Translate to a system of equations and then solve: A Mississippi river boat cruise sailed 120 miles upstream for 12 hours and then took 10 hours to return to the dock. Find the speed of the river boat in still water and the speed of the river current.

Try It 5.86

Translate to a system of equations and then solve: Jason paddled his canoe 24 miles upstream for 4 hours. It took him 3 hours to paddle back. Find the speed of the canoe in still water and the speed of the river current.

Wind currents affect airplane speeds in the same way as water currents affect boat speeds. We’ll see this in Example 5.44. A wind current in the same direction as the plane is flying is called a tailwind. A wind current blowing against the direction of the plane is called a headwind.

Example 5.44

Translate to a system of equations and then solve:

A private jet can fly 1095 miles in three hours with a tailwind but only 987 miles in three hours into a headwind. Find the speed of the jet in still air and the speed of the wind.

Try It 5.87

Translate to a system of equations and then solve: A small jet can fly 1,325 miles in 5 hours with a tailwind but only 1025 miles in 5 hours into a headwind. Find the speed of the jet in still air and the speed of the wind.

Try It 5.88

Translate to a system of equations and then solve: A commercial jet can fly 1728 miles in 4 hours with a tailwind but only 1536 miles in 4 hours into a headwind. Find the speed of the jet in still air and the speed of the wind.

Section 5.4 Exercises

Practice Makes Perfect

Translate to a System of Equations

In the following exercises, translate to a system of equations and solve the system.

183.

The sum of two numbers is fifteen. One number is three less than the other. Find the numbers.

184.

The sum of two numbers is twenty-five. One number is five less than the other. Find the numbers.

185.

The sum of two numbers is negative thirty. One number is five times the other. Find the numbers.

186.

The sum of two numbers is negative sixteen. One number is seven times the other. Find the numbers.

187.

Twice a number plus three times a second number is twenty-two. Three times the first number plus four times the second is thirty-one. Find the numbers.

188.

Six times a number plus twice a second number is four. Twice the first number plus four times the second number is eighteen. Find the numbers.

189.

Three times a number plus three times a second number is fifteen. Four times the first plus twice the second number is fourteen. Find the numbers.

190.

Twice a number plus three times a second number is negative one. The first number plus four times the second number is two. Find the numbers.

191.

A married couple together earn $75,000. The husband earns $15,000 more than five times what his wife earns. What does the wife earn?

192.

During two years in college, a student earned $9,500. The second year she earned $500 more than twice the amount she earned the first year. How much did she earn the first year?

193.

Daniela invested a total of $50,000, some in a certificate of deposit (CD) and the remainder in bonds. The amount invested in bonds was $5000 more than twice the amount she put into the CD. How much did she invest in each account?

194.

Jorge invested $28,000 into two accounts. The amount he put in his money market account was $2,000 less than twice what he put into a CD. How much did he invest in each account?

195.

In her last two years in college, Marlene received $42,000 in loans. The first year she received a loan that was $6,000 less than three times the amount of the second year’s loan. What was the amount of her loan for each year?

196.

Jen and David owe $22,000 in loans for their two cars. The amount of the loan for Jen’s car is $2000 less than twice the amount of the loan for David’s car. How much is each car loan?

Solve Direct Translation Applications

In the following exercises, translate to a system of equations and solve.

197.

Alyssa is twelve years older than her sister, Bethany. The sum of their ages is forty-four. Find their ages.

198.

Robert is 15 years older than his sister, Helen. The sum of their ages is sixty-three. Find their ages.

199.

The age of Noelle’s dad is six less than three times Noelle’s age. The sum of their ages is seventy-four. Find their ages.

200.

The age of Mark’s dad is 4 less than twice Marks’s age. The sum of their ages is ninety-five. Find their ages.

201.

Two containers of gasoline hold a total of fifty gallons. The big container can hold ten gallons less than twice the small container. How many gallons does each container hold?

202.

June needs 48 gallons of punch for a party and has two different coolers to carry it in. The bigger cooler is five times as large as the smaller cooler. How many gallons can each cooler hold?

203.

Shelly spent 10 minutes jogging and 20 minutes cycling and burned 300 calories. The next day, Shelly swapped times, doing 20 minutes of jogging and 10 minutes of cycling and burned the same number of calories. How many calories were burned for each minute of jogging and how many for each minute of cycling?

204.

Drew burned 1800 calories Friday playing one hour of basketball and canoeing for two hours. Saturday he spent two hours playing basketball and three hours canoeing and burned 3200 calories. How many calories did he burn per hour when playing basketball?

205.

Troy and Lisa were shopping for school supplies. Each purchased different quantities of the same notebook and thumb drive. Troy bought four notebooks and five thumb drives for $116. Lisa bought two notebooks and three thumb dives for $68. Find the cost of each notebook and each thumb drive.

206.

Nancy bought seven pounds of oranges and three pounds of bananas for $17. Her husband later bought three pounds of oranges and six pounds of bananas for $12. What was the cost per pound of the oranges and the bananas?

Solve Geometry Applications In the following exercises, translate to a system of equations and solve.

207.

The difference of two complementary angles is 30 degrees. Find the measures of the angles.

208.

The difference of two complementary angles is 68 degrees. Find the measures of the angles.

209.

The difference of two supplementary angles is 70 degrees. Find the measures of the angles.

210.

The difference of two supplementary angles is 24 degrees. Find the measure of the angles.

211.

The difference of two supplementary angles is 8 degrees. Find the measures of the angles.

212.

The difference of two supplementary angles is 88 degrees. Find the measures of the angles.

213.

The difference of two complementary angles is 55 degrees. Find the measures of the angles.

214.

The difference of two complementary angles is 17 degrees. Find the measures of the angles.

215.

Two angles are supplementary. The measure of the larger angle is four more than three times the measure of the smaller angle. Find the measures of both angles.

216.

Two angles are supplementary. The measure of the larger angle is five less than four times the measure of the smaller angle. Find the measures of both angles.

217.

Two angles are complementary. The measure of the larger angle is twelve less than twice the measure of the smaller angle. Find the measures of both angles.

218.

Two angles are complementary. The measure of the larger angle is ten more than four times the measure of the smaller angle. Find the measures of both angles.

219.

Wayne is hanging a string of lights 45 feet long around the three sides of his rectangular patio, which is adjacent to his house. The length of his patio, the side along the house, is five feet longer than twice its width. Find the length and width of the patio.

220.

Darrin is hanging 200 feet of Christmas garland on the three sides of fencing that enclose his rectangular front yard. The length, the side along the house, is five feet less than three times the width. Find the length and width of the fencing.

221.

A frame around a rectangular family portrait has a perimeter of 60 inches. The length is fifteen less than twice the width. Find the length and width of the frame.

222.

The perimeter of a rectangular toddler play area is 100 feet. The length is ten more than three times the width. Find the length and width of the play area.

Solve Uniform Motion Applications In the following exercises, translate to a system of equations and solve.

223.

Sarah left Minneapolis heading east on the interstate at a speed of 60 mph. Her sister followed her on the same route, leaving two hours later and driving at a rate of 70 mph. How long will it take for Sarah’s sister to catch up to Sarah?

224.

College roommates John and David were driving home to the same town for the holidays. John drove 55 mph, and David, who left an hour later, drove 60 mph. How long will it take for David to catch up to John?

225.

At the end of spring break, Lucy left the beach and drove back towards home, driving at a rate of 40 mph. Lucy’s friend left the beach for home 30 minutes (half an hour) later, and drove 50 mph. How long did it take Lucy’s friend to catch up to Lucy?

226.

Felecia left her home to visit her daughter driving 45 mph. Her husband waited for the dog sitter to arrive and left home twenty minutes (1/3 hour) later. He drove 55 mph to catch up to Felecia. How long before he reaches her?

227.

The Jones family took a 12 mile canoe ride down the Indian River in two hours. After lunch, the return trip back up the river took three hours. Find the rate of the canoe in still water and the rate of the current.

228.

A motor boat travels 60 miles down a river in three hours but takes five hours to return upstream. Find the rate of the boat in still water and the rate of the current.

229.

A motor boat traveled 18 miles down a river in two hours but going back upstream, it took 4.5 hours due to the current. Find the rate of the motor boat in still water and the rate of the current. (Round to the nearest hundredth.).

230.

A river cruise boat sailed 80 miles down the Mississippi River for four hours. It took five hours to return. Find the rate of the cruise boat in still water and the rate of the current. (Round to the nearest hundredth.).

231.

A small jet can fly 1,072 miles in 4 hours with a tailwind but only 848 miles in 4 hours into a headwind. Find the speed of the jet in still air and the speed of the wind.

232.

A small jet can fly 1,435 miles in 5 hours with a tailwind but only 1215 miles in 5 hours into a headwind. Find the speed of the jet in still air and the speed of the wind.

233.

A commercial jet can fly 868 miles in 2 hours with a tailwind but only 792 miles in 2 hours into a headwind. Find the speed of the jet in still air and the speed of the wind.

234.

A commercial jet can fly 1,320 miles in 3 hours with a tailwind but only 1,170 miles in 3 hours into a headwind. Find the speed of the jet in still air and the speed of the wind.

Everyday Math

235.

At a school concert, 425 tickets were sold. Student tickets cost $5 each and adult tickets cost $8 each. The total receipts for the concert were $2,851. Solve the system

{s+a=4255s+8a=2,851{s+a=4255s+8a=2,851

to find ss, the number of student tickets and aa, the number of adult tickets.

236.

The first graders at one school went on a field trip to the zoo. The total number of children and adults who went on the field trip was 115. The number of adults was 1414 the number of children. Solve the system

{c+a=115a=14c{c+a=115a=14c

to find cc, the number of children and aa, the number of adults.

Writing Exercises

237.

Write an application problem similar to Example 5.37 using the ages of two of your friends or family members. Then translate to a system of equations and solve it.

238.

Write a uniform motion problem similar to Example 5.42 that relates to where you live with your friends or family members. Then translate to a system of equations and solve it.

Self Check

After completing the exercises, use this checklist to evaluate your mastery of the objectives of this section.

This figure shows a table with four rows and four columns. The columns are labeled, “I can…,” “Confidently.” “With some help.” and “No - I don’t get it.” The only column with filled in cells below it is labeled “I can…” It reads, “translate to a system of equations.” “solve direct translation applications.”  “solve geometry applications.” and “solve uniform motion applications.”

On a scale of 1-10, how would you rate your mastery of this section in light of your responses on the checklist? How can you improve this?

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/elementary-algebra/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/elementary-algebra/pages/1-introduction
Citation information

© Oct 23, 2020 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.