### Practice Test

Plot each point in a rectangular coordinate system.

- ⓐ $\left(2,5\right)$
- ⓑ $\left(\mathrm{-1},\mathrm{-3}\right)$
- ⓒ $\left(0,2\right)$
- ⓓ $\left(\mathrm{-4},\frac{3}{2}\right)$
- ⓔ $\left(5,0\right)$

Which of the given ordered pairs are solutions to the equation $3x-y=6$?

- ⓐ $\left(3,3\right)$
- ⓑ $\left(2,0\right)$
- ⓒ $\left(4,\mathrm{-6}\right)$

Find three solutions to the linear equation $y=\mathrm{-2}x-4$.

Find the slope of each line shown.

Find the slope of the line between the points $\left(5,2\right)$ and $\left(\mathrm{-1},\mathrm{-4}\right)$.

Graph the line with slope $\frac{1}{2}$ containing the point $\left(\mathrm{-3},\mathrm{-4}\right)$.

Graph the line for each of the following equations.

$y=\text{\u2212}x$

$4x+2y=\mathrm{-8}$

$x=\mathrm{-3}$

Find the equation of each line. Write the equation in slope–intercept form.

$m=2$, point $\left(\mathrm{-3},\mathrm{-1}\right)$

parallel to the line $y=-\frac{2}{3}x-1$, containing the point $\left(\mathrm{-3},8\right)$

perpendicular to the line $y=\frac{5}{4}x+2$, containing the point $\left(\mathrm{-10},3\right)$

Write the inequality shown by the graph with the boundary line $y=\text{\u2212}x-3$.

Graph each linear inequality.

$x-y\ge \mathrm{-4}$

$y<3$