Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Contemporary Mathematics

7.9 Conditional Probability and the Multiplication Rule

Contemporary Mathematics7.9 Conditional Probability and the Multiplication Rule

Two red dice are shown. The first die shows 5 and the second die shows 1.
Figure 7.37 If you roll two dice by throwing them one at a time, the face showing on the first die will affect the possible outcomes for the sum of the two dice. (credit: “dice” by Ciarán Archer/Flickr, CC BY 2.0)

Learning Objectives

After completing this section, you should be able to:

  1. Calculate conditional probabilities.
  2. Apply the Multiplication Rule for Probability to compute probabilities.

Back in Example 7.18, we constructed the following table (Figure 7.38) to help us find the probabilities associated with rolling two standard 6-sided dice:

A table with 6 rows and 6 columns. The columns represent the first die and are titled, 1, 2, 3, 4, 5, and 6. The rows represent the second die and are titled, 1, 2, 3, 4, 5, and 6. The data is as follows: Row 1: 2, 3, 4, 5, 6, 7. Row 2: 3, 4, 5, 6, 7, 8. Row 3: 4, 5, 6, 7, 8, 9. Row 4: 5, 6, 7, 8, 9, 10. Row 5: 6, 7, 8, 9, 10, 11. Row 6: 7, 8, 9, 10, 11, 12.
Figure 7.38

For example, 3 of these 36 equally likely outcomes correspond to rolling a sum of 10, so the probability of rolling a 10 is 336=112336=112. However, if you choose to roll the dice one at a time, the probability of rolling a 10 will change after the first die comes to rest. For example, if the first die shows a 5, then the probability of rolling a sum of 10 has jumped to 1616—the event will occur if the second die also shows a 5, which is 1 of 6 equally likely outcomes for the second die. If instead the first die shows a 3, then the probability of rolling a sum of 10 drops to 0—there are no outcomes for the second die that will give us a sum of 10.

Understanding how probabilities can shift as we learn new information is critical in the analysis of our second type of compound events: those built with “and.” This section will explain how to compute probabilities of those compound events.

Conditional Probabilities

When we analyze experiments with multiple stages, we often update the probabilities of the possible final outcomes or the later stages of the experiment based on the results of one or more of the initial stages. These updated probabilities are called conditional probabilities.

In other words, if OO is a possible outcome of the first stage in a multistage experiment, then the probability of an event EE conditional on OO (denoted P(E|O)P(E|O), read “the probability of EE given OO”) is the updated probability of EE under the assumption that OO occurred.

In the example that opened this section, we might consider rolling two dice as a multistage experiment: rolling one, then the other. If we define EE to be the event “roll a sum of 10,” OO to be the event “first die shows 5,” and QQ to be the event “first die shows 3,” then we computed P(E)=112P(E)=112, P(E|O)=16P(E|O)=16, and P(E|Q)=0P(E|Q)=0.

Example 7.31

Computing Conditional Probabilities

  1. April is playing a coin-flipping game with Ben. She will flip a coin 3 times. If the coin lands on heads more than tails, April wins; if it lands on tails more than heads, Ben wins. Let AA be the event “April wins,” HH be “first flip is heads,” and TT be “first flip is tails.” Compute P(A)P(A), P(A|H)P(A|H), and P(A|T)P(A|T).
  2. You are about to draw 2 cards without replacement from a deck containing only these 10 cards: AA, AA, AA, AA, KK, KK, QQ, QQ, JJ, JJ. We’ll define the following events: FF is “both cards are the same rank,” AA is “first card is an ace,” and KK is “first card is a king.” Compute P(F|A)P(F|A) and P(F|K)P(F|K).
  3. Jim’s sock drawer contains 5 black socks and 3 blue socks. To avoid waking his partner, Jim doesn’t want to turn the lights on, so he puts on 2 socks at random. Let MM be the event “Jim’s 2 socks match,” let KK be the event “the sock on Jim’s left foot is black,” and let LL be the event “the sock on Jim’s left foot is blue.” Compute P(M)P(M), P(M|K)P(M|K), and P(M|L)P(M|L).

Your Turn 7.31

You are about to roll a special 6-sided die that has both a colored letter and a colored number on each face. The faces are labeled with: a red 1 and a blue A, a red 1 and a green A, an orange 1 and a green B, an orange 2 and a red C, a purple 3 and a brown D, an orange 4 and a blue E. Find the given conditional probabilities:
1.
P ( the letter is a vowel | the number is orange )
2.
P ( the number is 1 | the number is red )
3.
P ( the number is red | the number is 1 )

Checkpoint

In Tree Diagrams, Tables, and Outcomes, we introduced the concept of dependence between stages of a multistage experiment. We stated at the time that two stages were dependent if the result of one stage affects the other stage. We explained that dependence in terms of the sample space, but sometimes that dependence can be a little more subtle; it’s more properly understood in terms of conditional probabilities. Two stages of an experiment are dependent if P(E|F)P(E|F)P(E|F)P(E|F) for some outcome of the second stage EE and outcome of the first stage FF.

Who Knew?

Protecting Bombers in World War II

In his book How Not to Be Wrong, Jordan Ellenberg recounts this anecdote: During World War II, the American military wanted to add additional armor plating to bomber aircraft, in order to reduce the chances that they get shot down. So, they collected data on planes after returning from missions. The data showed that the fuselage, wings, and fuel system had many more bullet holes (per unit area) than the engine compartments, so the military brass wanted to add additional armor to the parts of the plane that were hit most often. Luckily, before they added the armor to the planes, they asked for a second opinion. Abraham Wald, a Jewish mathematician who had fled the rising Nazi regime, pointed out that it was far more important that the armor plating be added to areas where there were fewer bullet holes. Why? The planes they were studying had already completed their missions, so the military was essentially looking at conditional probabilities: the probability of suffering a bullet strike, given that the plane made it back safely. More bullet holes in an area on the plane indicated that was a region that wasn’t as important for the plane’s survival!

Compound Events Using “And” and the Multiplication Rule

For multistage experiments, the outcomes of the experiment as a whole are often stated in terms of the outcomes of the individual stages. Commonly, those statements are joined with “and.” For example, in the sock drawer example just above, one outcome might be “the left sock is black and the right sock is blue.” As with “or” compound events, these probabilities can be computed with basic arithmetic.

FORMULA

Multiplication Rule for Probability: If EE and FF are events associated with the first and second stages of an experiment, then P(EandF)=P(E)×P(F|E)P(EandF)=P(E)×P(F|E).

Checkpoint

In The Addition Rule for Probability, we considered probabilities of events connected with “and” in the statement of the Inclusion/Exclusion Principle. These two scenarios are different; in the statement of the Inclusion/Exclusion Principle, the events connected with “and” are both events associated with the same single-stage experiment (or the same stage of a multistage experiment). In the Multiplication Rule, we’re looking at events associated with different stages of a multistage experiment.

Example 7.32

Using the Multiplication Rule for Probability

You are president of a club with 10 members: 4 seniors, 3 juniors, 2 sophomores, and 1 first-year. You need to choose 2 members to represent the club on 2 college committees. The first person selected will be on the Club Awards Committee and the second will be on the New Club Orientation Committee. The same person cannot be selected for both. You decide to select these representatives at random.

  1. What is the probability that a senior is chosen for both positions?
  2. What is the probability that a junior is chosen first and a sophomore is chosen second?
  3. What is the probability that a sophomore is chosen first and a senior is chosen second?

Your Turn 7.32

You’re drawing 2 cards in order from a deck containing only the cards A , A , K , 10 , 9 , 9 , 9 , and 6 . Compute the following:
1.
P ( draw a first and a second )
2.
P ( draw a 9 first and a 6 second )
3.
P ( draw two hearts )

WORK IT OUT

The Birthday Problem

One of the most famous problems in probability theory is the Birthday Problem, which has to do with shared birthdays in a large group. To make the analysis easier, we’ll ignore leap days, and assume that the probability of being born on any given date is 13651365. Now, if you have 366 people in a room, we’re guaranteed to have at least one pair of people who share a single birthday. Imagine filling the room by first admitting someone born on January 1, then someone born on January 2, and so on… The 365th person admitted would be born on December 31. If you add one more person to the room, that person’s birthday would have to match someone else’s.

Let’s look at the other end of the spectrum. If you choose two people at random, what is the probability that they share a birthday? As with many probability questions, this is best addressed by find out the probability that they do not share a birthday. The first person’s birthday can be anything (probability 1), and the second person’s birthday can be anything other than the first person’s birthday (probability 364365364365). The probability that they have different birthdays is 1×364365=3643651×364365=364365. So, the probability that they share a birthday is 1364365=13651364365=1365.

What if we have three people? The probability that they all have different birthdays can be obtained by extending our previous calculation: The probability that two people have different birthdays is 364365364365, so if we add a third to the mix, the probability that they have a different birthday from the other two is 363365363365. So, the probability that all three have different birthdays is 364365×3633650.9918364365×3633650.9918, and thus the probability that there’s a shared birthday in the group is 10.99180.008210.99180.0082.

The big question is this: How many people do we need in the room to have the probability of a shared birthday greater than 1212? Make a guess, then with a partner keep adding hypothetical people to the group and computing probabilities until you get there!

It is often useful to combine the rules we’ve seen so far with the techniques we used for finding sample spaces. In particular, trees can be helpful when we want to identify the probabilities of every possible outcome in a multistage experiment. The next example will illustrate this.

Example 7.33

Using Tree Diagrams to Help Find Probabilities

The board game Clue uses a deck of 21 cards: 6 suspects, 6 weapons, and 9 rooms. Suppose you are about to draw 2 cards from this deck. There are 6 possible outcomes for the draw: 2 suspects, 2 weapons, 2 rooms, 1 suspect and 1 weapon, 1 suspect and 1 room, or 1 weapon and 1 room. What are the probabilities for each of these outcomes?

Your Turn 7.33

1.
You are about to perform the following two-stage experiment. First, you will flip a coin. If the result is heads, roll a standard 6-sided die. If the result of the coin flip is tails, roll a modified 6-sided die with faces labeled 1, 1, 1, 2, 2, 3. Use a tree diagram to find the probability of rolling each of the numbers from 1 to 6.

WORK IT OUT

The Monty Hall Problem

On the original version of the game show Let’s Make a Deal, originally hosted by Monty Hall and now hosted by Wayne Brady, one contestant was chosen to play a game for the grand prize of the day (often a car). Here’s how it worked: On the stage were three areas concealed by numbered curtains. The car was hidden behind one of the curtains; the other two curtains hid worthless prizes (called “Zonks” on the show). The contestant would guess which curtain concealed the car. To build tension, Monty would then reveal what was behind one of the other curtains, which was always one of the Zonks (Since Monty knew where the car was hidden, he always had at least one Zonk curtain that hadn’t been chosen that he could reveal). Monty then turned to the contestant and asked: “Do you want to stick with your original choice, or do you want to switch your choice to the other curtain?” What should the contestant do? Does it matter?

With a partner or in a small group, simulate this game. You can do that with a small candy (the prize) hidden under one of three cups, or with three playing cards (just decide ahead of time which card represents the “Grand Prize”). One person plays the host, who knows where the prize is hidden. Another person plays the contestant and tries to guess where the prize is hidden. After the guess is made, the host should reveal a losing option that wasn’t chosen by the contestant. The contestant then has the option to stick with the original choice or switch to the other, unrevealed option. Play about 20 rounds, taking turns in each role and making sure that both contestant strategies (stick or switch) are used equally often. After each round, make a note of whether the contestant chose “stick” or “switch” and whether the contestant won or lost. Find the empirical probability of winning under each strategy. Then, see if you can use tree diagrams to verify your findings.

Check Your Understanding

For the following exercises, you are rolling two 6-sided dice, each of which has 3 orange faces, 2 green faces, and 1 blue face.
50.
What is the probability of rolling 2 orange faces?
51.
What is the probability of rolling 2 green faces?
52.
What is the probability of rolling 1 orange and 1 green face (in any order)?
For the following exercises, you are about to draw 2 cards at random (without replacement) from a deck containing only these 10 cards: A , A , A , A , K , K , Q , Q , J , J .
53.
What is the probability of drawing 2 aces?
54.
What is the probability of drawing an ace first and a king second?
55.
What is the probability of drawing a and a (in any order)?

Section 7.9 Exercises

For the following exercises, we are considering a special 6-sided die, with faces that are labeled with a number and a letter: 1A, 1B, 2A, 2C, 4A, and 4E. You are about to roll this die twice.
1 .
What is the probability of rolling two 1s?
2 .
What is the probability of rolling two vowels?
3 .
What is the probability of rolling an even number first and an odd number second?
4 .
What is the probability of rolling an even number and an odd number in any order?
5 .
What is the probability of rolling a consonant first and a 1 second?
6 .
What is the probability of rolling one number less than 3 and one number greater than 3, in any order?
In the following exercises, you are about to draw Scrabble tiles from a bag; the bag contains the letters A, A, C, E, E, E, L, L, N, O, R, S, S, S, T, X.
7 .
If you draw 1 tile at random, compute
  1. P ( tile shows A )
  2. P ( tile shows A | tile shows a vowel )
8 .
If you draw 1 tile at random, compute:
  1. P ( tile shows a vowel )
  2. P ( tile shows a vowel | tile shows a letter that comes after M alphabetically )
9 .
If you draw 2 tiles with replacement, compute P ( both are vowels ) .
10 .
If you draw 2 tiles without replacement, compute P ( both are vowels ) .
11 .
If you draw 2 tiles with replacement, compute P ( first is a vowel and second is a consonant ) .
12 .
If you draw 2 tiles without replacement, compute P ( first is a vowel and second is a consonant ) .
13 .
If you draw 2 tiles with replacement, compute P ( one is a vowel and one is a consonant ) .
14 .
If you draw 2 tiles without replacement, compute P ( one is a vowel and one is a consonant ) .
15 .
If you draw 2 tiles with replacement, compute P ( both are Es ) .
16 .
If you draw 2 tiles without replacement, compute P ( both are Es ) .
For the following exercises, use the table provided, which breaks down the enrollment at a certain liberal arts college by class year and area of study.
Class Year
First-Year Sophomore Junior Senior Totals
Area Of Study Arts 138 121 148 132 539
Humanities 258 301 275 283 1117
Social Science 142 151 130 132 555
Natural Science/Mathematics 175 197 203 188 763
Totals 713 770 756 735 2974
17 .
Compute the probability that a randomly selected student is a sophomore, given that they are majoring in the arts.
18 .
Compute the probability that a randomly selected student is majoring in the arts, given that they are a sophomore.
19 .
If two seniors are chosen at random, compute the probability that both are social science majors. Give your answer as a decimal, rounded to 5 decimal places.
20 .
If two humanities majors are chosen at random, compute the probability that the first is a senior and the second is a junior. Give your answer as a decimal, rounded to 5 decimal places.
21 .
If two natural science/mathematics majors are chosen at random, compute the probability that one is a sophomore and one is a senior (in any order). Give your answer as a decimal, rounded to 5 decimal places.
22 .
If two students are chosen at random, compute the probability that one is an arts major and one is a social science major, in any order. Give your answer as a decimal, rounded to 5 decimal places.

In the following exercises deal with the game “Punch a Bunch,” which appears on the TV game show The Price Is Right. In this game, contestants have a chance to punch through up to 4 paper circles on a board; behind each circle is a card with a dollar amount printed on it. There are 50 of these circles; the dollar amounts are given in this table:

Dollar Amount Frequency
$25,000 1
$10,000 2
$5,000 4
$2,500 8
$1,000 10
$500 10
$250 10
$100 5

Contestants are shown their selected dollar amounts one at a time, in the order selected. After each is revealed, the contestant is given the option of taking that amount of money or throwing it away in favor of the next amount. (You can watch the game being played in the video Playing “Punch a Bunch.”) Jeremy is playing “Punch a Bunch” and gets 2 punches.

23 .
What is the probability that both punches are worth less than $1,000?
24 .
What is the probability that both punches are worth more than $2,500?
25 .
What is the probability that the second punch is worth more than the first punch, given that the first punch was worth $250?
26 .
What is the probability that the second punch is worth more than the first punch, given that the first punch was worth $1,000?
27 .
What is the probability that the second punch is worth less than the first punch, given that the first punch was worth $250?
28 .
What is the probability that the second punch is worth less than the first punch, given that the first punch was worth $1,000?
29 .
What is the probability that both punches are worth $100?
30 .
What is the probability that both punches are worth the same amount?
In the following exercises, we consider two baseball teams playing a best-of-three series (meaning the first team to win two games wins the series). Team A is a little bit better than Team B, so we expect Team A will win 55% of the time.
31 .
What is the probability that Team A wins the series given that Team B wins the first game?
32 .
What is the probability that Team B wins the series given that Team B wins the first game?
33 .
What is the probability that Team B wins the series given that Team A wins the first game?
34 .
What is the probability that Team A wins the series given that Team A wins the first game?
35 .
Build a tree diagram that shows all possible outcomes of the series. Label the edges with appropriate probabilities.
36 .
What is the probability that Team A wins the series?
37 .
If instead Team A has a 75% chance of winning each game, what is the probability that Team A wins the series?
38 .
If instead Team A has a 90% chance of winning each game, what is the probability that Team A wins the series?
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/contemporary-mathematics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/contemporary-mathematics/pages/1-introduction
Citation information

© Jul 25, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.