Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Contemporary Mathematics

1.4 Set Operations with Two Sets

Contemporary Mathematics1.4 Set Operations with Two Sets

A group of men and women of varying ages are smiling and posing for a group photo.
Figure 1.18 A large, multigenerational family contains an intersection and a union of sets. (credit: “Family Photo Shoot Bani Syakur” by Mainur Risyada/Flickr, CC BY 2.0)

Learning Objectives

After completing this section, you should be able to:

  1. Determine the intersection of two sets.
  2. Determine the union of two sets.
  3. Determine the cardinality of the union of two sets.
  4. Apply the concepts of AND and OR to set operations.
  5. Draw conclusions from Venn diagrams with two sets.

The movie Yours, Mine, and Ours was originally released in 1968 and starred Lucille Ball and Henry Fonda. This movie, which is loosely based on a true story, is about the marriage of Helen, a widow with eight children, and Frank, a widower with ten children, who then have an additional child together. The movie is a comedy that plays on the interpersonal and organizational struggles of feeding, bathing, and clothing twenty people in one household.

If we consider the set of Helen's children and the set of Frank's children, then the child they had together is the intersection of these two sets, and the collection of all their children combined is the union of these two sets. In this section, we will explore the operations of union and intersection as it relates to two sets.

The Intersection of Two Sets

The members that the two sets share in common are included in the intersection of two sets. To be in the intersection of two sets, an element must be in both the first set and the second set. In this way, the intersection of two sets is a logical AND statement. Symbolically, AA intersection BB is written as: ABAB. AA intersection BB is written in set builder notation as: AB={x|xAandxB}AB={x|xAandxB}.

Let us look at Helen's and Frank's children from the movie Yours, Mine, and Ours. Helen's children consist of the set H={Colleen, Nick, Janette, Tommy, Jean, Phillip, Gerald, Theresa, Joseph}H={Colleen, Nick, Janette, Tommy, Jean, Phillip, Gerald, Theresa, Joseph} and Frank's children are included in the set F={Mike, Rusty, Greg, Rosemary, Loise, Susan, Veronica, Mary, Germaine, Joan, Joseph}F={Mike, Rusty, Greg, Rosemary, Loise, Susan, Veronica, Mary, Germaine, Joan, Joseph}. HH intersection FF is the set of children they had together. HF={Joseph}HF={Joseph}, because Joseph is in both set HH and set FF.

Example 1.23

Finding the Intersection of Set AA and Set BB

Set A={1,3,5,7,9}A={1,3,5,7,9} and B={2,3,5,7}. B={2,3,5,7}. Find AA intersection B.B.

Your Turn 1.23

1.
Set A = { h , a , p , y } and B = { s , a , d } . Find A intersection B .

Notice that if sets AA and BB are disjoint sets, then they do not share any elements in common, and AA intersection BB is the empty set, as shown in the Venn diagram below.

A two-set Venn diagram, A and B, not intersecting one another is given. Outside the diagram, it is labeled U.
Figure 1.19

Example 1.24

Determining the Intersection of Disjoint Sets

Set A={0,2,4,6,8}A={0,2,4,6,8} and set B={1,3,5,7,9}.B={1,3,5,7,9}. Find AB.AB.

Your Turn 1.24

1.
Set A = { red, yellow, blue } and set B = { orange, green, purple } . Find A B .

Notice that if set AA is a subset of set BB, then AA intersection BB is equal to set AA, as shown in the Venn diagram below.

A two-set Venn diagram, A and B, where A is inside B is depicted. Outside the diagram, it is labeled U.
Figure 1.20

Example 1.25

Finding the Intersection of a Set and a Subset

Set A={1,3,5,}A={1,3,5,} and set B=={1,2,3,}B=={1,2,3,} Find AB.AB.

Your Turn 1.25

1.
Set A = { a , b , c , , z } and set B = { a , e , i , o , u } . Find A B .

The Union of Two Sets

Like the union of two families in marriage, the union of two sets includes all the members of the first set and all the members of the second set. To be in the union of two sets, an element must be in the first set, the second set, or both. In this way, the union of two sets is a logical inclusive OR statement. Symbolically, AA union BB is written as: AB.AB. AA union BB is written in set builder notation as: AB={x|xAorxB}.AB={x|xAorxB}.

Let us consider the sets of Helen's and Frank's children from the movie Yours, Mine, and Ours again. Helen's children is set H={Colleen, Nick, Janette, Tommy, Jean, Phillip, Gerald, Theresa, Joseph}H={Colleen, Nick, Janette, Tommy, Jean, Phillip, Gerald, Theresa, Joseph} and Frank's children is set F={Mike, Rusty, Greg, Rosemary, Loise, Susan, Veronica, Mary, Germaine, Joan, Joseph}F={Mike, Rusty, Greg, Rosemary, Loise, Susan, Veronica, Mary, Germaine, Joan, Joseph}. The union of these two sets is the collection of all nineteen of their children, HF={Colleen, Nick, Janette, Tommy, Jean, Phillip, Gerald, Theresa, Joseph, Mike, Rusty, Greg, Rosemary, Loise, Susan, Veronica, Mary, Germaine, Joan}.HF={Colleen, Nick, Janette, Tommy, Jean, Phillip, Gerald, Theresa, Joseph, Mike, Rusty, Greg, Rosemary, Loise, Susan, Veronica, Mary, Germaine, Joan}.
Notice, Joseph is in both set HH and set FF, but he is only one child, so, he is only listed once in the union.

Example 1.26

Finding the Union of Sets AA and BB When AA and BB Overlap

Set A={1,3,5,7,9}A={1,3,5,7,9} and set B={2,3,5,7}B={2,3,5,7}. Find AA union BB.

Your Turn 1.26

1.
Set A = { h , a , p , y } and set B = { s , a , d } . Find A union B .

When observing the union of sets AA and BB, notice that both set AA and set BB are subsets of AA union BB. Graphically, AA union BB can be represented in several different ways depending on the members that they have in common. If AA and BB are disjoint sets, then AA union BB would be represented with two disjoint circles within the universal set, as shown in the Venn diagram below.

A two-set Venn diagram, A and B, not intersecting one another is given. Outside the diagram, it is labeled U.
Figure 1.21 A B A B

If sets AA and BB share some, but not all, members in common, then the Venn diagram is drawn as two separate circles that overlap.

A two-set Venn diagram, A and B, intersecting one another is given. Outside the diagram, it is labeled U.
Figure 1.22

If every member of set AA is also a member of set BB, then AA is a subset of set BB, and AA union BB would be equal to set BB. To draw the Venn diagram, the circle representing set AA should be completely enclosed in the circle containing set BB.

A two-set Venn diagram, A and B, where A is inside B is depicted. Outside the diagram, it is labeled U.
Figure 1.23

Example 1.27

Finding the Union of Sets AA and BB When AA and BB Are Disjoint

Set A={0,2,4,6,8}A={0,2,4,6,8} and set B={1,3,5,7,9}.B={1,3,5,7,9}. Find AB.AB.

Your Turn 1.27

1.
Set A = { red, yellow, blue } and set B = { orange, green, purple } . Find A B .

Example 1.28

Finding the Union of Sets AA and BB When One Set is a Subset of the Other

Set A={1,3,5,}A={1,3,5,} and set B=={1,2,3,}.B=={1,2,3,}. Find AB.AB.

Your Turn 1.28

1.
Set A = { a , b , c , , z } and set B = { a , e , i , o , u } . Find A B .

Tech Check

Set Operation Practice

Sets Challenge is an application available on both Android and iPhone smartphones that allows you to practice and gain familiarity with the operations of set union, intersection, complement, and difference.

A screenshot of an application named Sets Challenge on the Google play store
Figure 1.24 Google Play Store image of Sets Challenge game. (credit: screenshot from Google Play)

The Sets Challenge application/game uses some notation that differs from the notation covered in the text.

  • The complement of set AA in this text is written symbolically as A,A, but the Sets Challenge game uses ACAC to represent the complement operation.
  • In the text we do not cover set difference between two sets AA and BB, represented in the game as AB.AB. In the game this operation removes from set AA all the elements in AB.AB. For example, if set A={a,b,c,d}A={a,b,c,d} and set B={b,d,f,h}B={b,d,f,h} are subsets of the universal set U={a,b,c,,z},U={a,b,c,,z}, then AB={a,b,c,d}{b,d}={a,c},AB={a,b,c,d}{b,d}={a,c}, and BA={b,d,f,h}{b,d}={f,h}.BA={b,d,f,h}{b,d}={f,h}. There is a project at the end of the chapter to research the set difference operation.

Determining the Cardinality of Two Sets

The cardinality of the union of two sets is the total number of elements in the set. Symbolically the cardinality of AA union BB is written, n(AB)n(AB). If two sets AA and BB are disjoint, the cardinality of AA union BB is the sum of the cardinality of set AA and the cardinality of set BB. If the two sets intersect, then AA intersection BB is a subset of both set AA and set BB. This means that if we add the cardinality of set AA and set BB, we will have added the number of elements in AA intersection BB twice, so we must then subtract it once as shown in the formula that follows.

FORMULA

The cardinality of AA union BB is found by adding the number of elements in set AA to the number of elements in set BB, then subtracting the number of elements in the intersection of set AA and set BB. n(AB)=n(A)+n(B)n(AB)n(AB)=n(A)+n(B)n(AB) or n(AorB)=n(A)+n(B)n(AandB).n(AorB)=n(A)+n(B)n(AandB).

Checkpoint

If sets AA and BB are disjoint, then n(AB)=n(AandB)=0n(AB)=n(AandB)=0 and the formula is still valid, but simplifies to n(AB)=n(A)+n(B).n(AB)=n(A)+n(B).

Example 1.29

Determining the Cardinality of the Union of Two Sets

The number of elements in set AA is 10, the number of elements in set BB is 20, and the number of elements in AA intersection BB is 4. Find the number of elements in AA union BB.

Your Turn 1.29

1.
If n ( A ) = 23 , n ( B ) = 17 , and n ( A B ) = 7 , then find n ( A B ) .

Example 1.30

Determining the Cardinality of the Union of Two Disjoint Sets

If AA and BB are disjoint sets and the cardinality of set AA is 37 and the cardinality of set BB is 43, find the cardinality of AA union BB.

Your Turn 1.30

1.
If A B = , n ( A ) = 35 , and n ( B ) = 78 , then find n ( A B ) .

Applying Concepts of “AND” and “OR” to Set Operations

To become a licensed driver, you must pass some form of written test and a road test, along with several other requirements depending on your age. To keep this example simple, let us focus on the road test and the written test. If you pass the written test but fail the road test, you will not receive your license. If you fail the written test, you will not be allowed to take the road test and you will not receive a license to drive. To receive a driver's license, you must pass the written test AND the road test. For an “AND” statement to be true, both conditions that make up the statement must be true. Similarly, the intersection of two sets AA and BB is the set of elements that are in both set AA and set BB. To be a member of AA intersection BB, an element must be in set AA and also must be in set BB. The intersection of two sets corresponds to a logical "AND" statement.

The union of two sets is a logical inclusive "OR" statement. Say you are at a birthday party and the host offers Leah, Lenny, Maya, and you some cake or ice cream for dessert. Leah asks for cake, Lenny accepts both cake and ice cream, Maya turns down both, and you choose only ice cream. Leah, Lenny, and you are all having dessert. The “OR” statement is true if at least one of the components is true. Maya is the only one who did not have cake or ice cream; therefore, she did not have dessert and the “OR” statement is false. To be in the union of two sets AA and BB, an element must be in set AA or set BB or both set AA and set BB.

Example 1.31

Applying the "AND" or "OR" Operation

A={0,3,6,9,12},B={0,4,8,12,16},A={0,3,6,9,12},B={0,4,8,12,16}, and C={1,2,3,5,8,13}.C={1,2,3,5,8,13}.

Find the set consisting of elements in:

  1. AandB.AandB.
  2. AorB.AorB.
  3. AorC.AorC.
  4. (BandC)orA.(BandC)orA.

Your Turn 1.31

A = { h , a , p , y } , and B = { a , w , e , s , o , m } , and C = { m , a , t , h } .
Find the set consisting of elements in:
1.
A  or  B .
2.
A  and  C .
3.
B  or  C .
4.
( A  and  C )  and  B .

Example 1.32

Determine and Apply the Appropriate Set Operations to Solve the Problem

Don Woods is serving cake and ice cream at his Juneteenth celebration. The party has a total of 54 guests in attendance. Suppose 30 guests requested cake, 20 guests asked for ice cream, and 12 guests did not have either cake or ice cream.

  1. How many guests had cake or ice cream?
  2. How many guests had cake and ice cream?

Your Turn 1.32

Ravi and Priya are serving soup and salad along with the main course at their wedding reception. The reception will have a total of 150 guests in attendance. A total of 92 soups and 85 salads were ordered, while 23 guests did not order any soup or salad.
1.
How many guests had soup or salad or both?
2.
How many guests had both soup and a salad?

Who Knew?

The Real Inventor of the Venn Diagram

John Venn, in his writings, references works by both John Boole and Augustus De Morgan, who referred to the circle diagrams commonly used to present logical relationships as Euler's circles. Leonhard Euler's works were published over 100 years prior to Venn's, and Euler may have been influenced by the works of Gottfried Leibniz.

So, why does John Venn get all the credit for these graphical depictions? Venn was the first to formalize the use of these diagrams in his book Symbolic Logic, published in 1881. Further, he made significant improvements in their design, including shading to highlight the region of interest. The mathematician C.L. Dodgson, also known as Lewis Carroll, built upon Venn’s work by adding an enclosing universal set.

Invention is not necessarily coming up with an initial idea. It is about seeing the potential of an idea and applying it to a new situation.

References:

Margaret E. Baron. "A Note on the Historical Development of Logic Diagrams: Leibniz, Euler and Venn." The Mathematical Gazette, vol. 53, no. 384, 1969, pp. 113-125. JSTOR, www.jstor.org/stable/3614533. Accessed 15 July 2021.

Deborah Bennett. "Drawing Logical Conclusions." Math Horizons, vol. 22, no. 3, 2015, pp. 12-15. JSTOR, www.jstor.org/stable/10.4169/mathhorizons.22.3.12. Accessed 15 July 2021.

Drawing Conclusions from a Venn Diagram with Two Sets

All Venn diagrams will display the relationships between the sets, such as subset, intersecting, and/or disjoint. In addition to displaying the relationship between the two sets, there are two main additional details that Venn diagrams can include: the individual members of the sets or the cardinality of each disjoint subset of the universal set.

A Venn diagram with two subsets will partition the universal set into 3 or 4 sections depending on whether they are disjoint or intersecting sets. Recall that the complement of set AA, written A,A, is the set of all elements in the universal set that are not in set A.A.

A two-set disjoint Venn diagram and a two-set intersecting Venn diagram are depicted side by side.  Outside both the Venn diagrams U is marked at the top left corner. The two sets of both the Venn diagrams are labeled A and B. In the first Venn diagram, Outside the set, the complement of A union B is given. In the second Venn diagram, Set A shows A union of B complement. Set B shows B union of A complement. The intersection of the sets shows A union B. Outside the set, the complement of A union B is given.
Figure 1.25 Side-by-side Venn diagrams with disjoint and intersecting sets, respectively.

Example 1.33

Using a Venn Diagram to Draw Conclusions about Set Membership

A two-set Venn diagram not intersecting one another is given. The first set is labeled A while the second set is labeled B.  Set A shows 1, 3, 5, 7. Set B shows 2, 4, 8, 6. Outside the sets, 0, 9 are given. Outside the Venn diagram, it is marked 'U equals (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).'
Figure 1.26
  1. Find AB.AB.
  2. Find AB.AB.
  3. Find BB.
  4. Find n(B).n(B).

Your Turn 1.33

A two-set Venn diagram intersecting one another is given. The first set is labeled A while the second set is labeled B. Set A shows 1, 9. Set B shows 2. The intersection of the sets shows 3, 5, 7. Outside the sets, 0, 4, 6 are given. Outside the Venn diagram, it is marked 'U equals (0, 1, 2, 3, 4, 5, 6, 7, 8, 9).'
Venn diagram with two intersecting sets and members.
1.
Find A B .
2.
Find A B .
3.
Find A B .
4.
Find n ( A B ) .

Example 1.34

Using a Venn Diagram to Draw Conclusions about Set Cardinality

A two-set Venn diagram intersecting one another is given. The first set is labeled A while the second set is labeled B.  Set A shows 7. Set B shows 5. The intersection of the sets shows 5. Outside the Venn diagram, it is marked U.
Figure 1.27 Venn diagram with two intersecting sets and number of elements in each section indicated.
  1. Find n(AorB).n(AorB).
  2. Find n(AandB).n(AandB).
  3. Find n(A).n(A).

Your Turn 1.34

A two-set Venn diagram not intersecting one another is given. The first set is labeled A while the second set is labeled B. Set A shows 23. Set B shows 17. Outside the sets, 10 is given. Outside the Venn diagram, it is marked U.
Venn diagram with two disjoint sets and number of elements in each section.
1.
Find n ( A  or  B ) .
2.
Find n ( A  and  B ) .
3.
Find n ( A ) .

Check Your Understanding

20.
The ___________ of two sets A and B is the set of all elements that they share in common.
21.
The ___________ of two sets A and B is the collection of all elements that are in set A or set B , or both set A and set B .
22.
The union of two sets A and B is represented symbolically as __________.
23.
The intersection of two sets A and B is represented symbolically as ___________.
24.
If set A is a subset of set B , then A intersection B is equal to set ___________.
25.
If set A is a subset of set B , then A union B is equal to set ___________.
26.
If set A and set B are disjoint sets, then A intersection B is the ___________ set.
27.
The cardinality of A union B , n ( A B ) , is found using the formula: ___________.

Section 1.4 Exercises

For the following exercises, determine the union or intersection of the sets as indicated.

A = { 2 , 4 , 6 , 8 , 10 , 12 } , B = { 4 , 8 , 12 , 16 , 20 } , C = { 8 , 16 , 24 , 32 , 40 } , and D = { 10 , 20 , 30 , 40 , 50 } .

1 .
B C
2 .
A D
3 .
D C
4 .
A D
5 .
A ( C D )
6 .
B ( A D )
7 .
D ( A C )
8 .
C ( A D )
9 .
B ( A D )
10 .
B ( A C )
11 .
B ( A D )
12 .
B ( A C )
For the following exercises, use the sets provided to apply the “AND” or “OR” operation as indicated to find the resulting set.

U = { a , b , c , , z } , S = { s , a , m , p , l , e } , M = { m , a , p } , L = { l , a , m , p } , D = { d , o , g } , and P = { p , l , o , t } .

13 .
Find the set consisting of elements in S and P .
14 .
Find the set consisting of elements in M or D .
15 .
Find the set consisting of elements in P or M .
16 .
Find the set consisting of elements in M and D .
17 .
Find the set consisting of elements in L and M .
18 .
Find the set consisting of elements in L or M .
19 .
Find the set consisting of the elements in D or M or P .
20 .
Find the set consisting of the elements in S or M or P .
21 .
Find the set consisting of the elements in ( S or D ) and P .
22 .
Find the set consisting of the elements in S or ( D and P ).
23 .
Find the set consisting of elements in U or ( P and S ).
24 .
Find the set consisting of elements in ( U or P ) and S .

For the following exercises, use the Venn diagram provided to answer the following questions about the sets.

A two-set Venn diagram not intersecting one another is given. The first set is labeled A while the second set is labeled B. Set A shows a, b, c, l, k. Set B shows d, e, r. Outside the Venn diagram, it is marked U equals (a, b, c, … , z).
25 .
Find A B .
26 .
Find A B .
27 .
Find ( A B ) .
28 .
Find ( A B ) .
29 .
Find A B .
30 .
Find B A .
For the following exercises, use the Venn diagram provided to answer the following questions about the sets. A two-set Venn diagram intersecting one another is given. The first set is labeled A while the second set is labeled B. Set A shows p, l. Set B shows b, r, s. The intersection of the sets shows a, c, e. Outside the Venn diagram, it is marked U equals (a, b, c, … , z).
31 .
Find A B .
32 .
Find A B .
33 .
Find ( A B ) .
34 .
Find ( A B ) .
35 .
Find B A .
36 .
Find A B .
For the following exercises, use the Venn diagram provided to answer the following questions about the sets. A two-set Venn diagram, A and B, where A is inside B is depicted. The numbers 1, 2, 3, and so on are marked at the center of set A. The number 0 is found on set B. Outside the Venn diagram, it is marked U equals Z. Z equals (Minus 2, Minus 1, 0, 1, 2).
37 .
Find A B .
38 .
Find A B .
39 .
Find ( A B ) .
40 .
Find ( A B ) .
41 .
Find B A .
42 .
Find A B .
For the following exercises, determine the cardinality of the union of set A and set B .
43 .
If set A = { red, white, blue } and set B = { green, white, red } , find n ( A B ) .
44 .
If set A = { silver, gold, bronze } and set B = { silver, gold } , find the number of elements in A or B .
45 .
If set A = { glass, plate, fork, knife } and set B = { bowl, spoon, cup } , find the number of elements in A or B .
46 .
If set A = { Algebra, Geometry, Biology, Physics, Chemistry, English } and Set B = { Algebra, English, History, Spanish, French, Music } , find n ( A B ) .
For the following exercises, use the Venn diagram to determine the cardinality of A union B .
47 .
A two-set Venn diagram of A and B intersecting one another is given. Set A shows 2 while set B shows 8.  The intersection of the sets shows 7. Outside the Venn diagram, it is marked U equals 21.
48 .
A two-set Venn diagram, A and B, not intersecting one another is given. Set A shows 3 while set B shows 10. Outside the Venn diagram, it is marked U equals 21.
49 .
A two-set Venn diagram, A and B, where A is inside B is depicted. The number 22 is marked at the center of set A. The number 52 lies on set B. Outside the Venn diagram, it is marked U equals 44.
50 .
A two-set Venn diagram of A and B intersecting one another is given. Set A shows 15 while set B shows 4.  The intersection of the sets shows 18. Outside the Venn diagram, it is marked U equals 44.
Citation/Attribution

This book may not be used in the training of large language models or otherwise be ingested into large language models or generative AI offerings without OpenStax's permission.

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/contemporary-mathematics/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/contemporary-mathematics/pages/1-introduction
Citation information

© Jul 25, 2024 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.