Skip to ContentGo to accessibility pageKeyboard shortcuts menu
OpenStax Logo
Concepts of Biology

Chapter Summary

Concepts of BiologyChapter Summary

Menu
Table of contents
  1. Preface
  2. The Cellular Foundation of Life
    1. 1 Introduction to Biology
      1. Introduction
      2. 1.1 Themes and Concepts of Biology
      3. 1.2 The Process of Science
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    2. 2 Chemistry of Life
      1. Introduction
      2. 2.1 The Building Blocks of Molecules
      3. 2.2 Water
      4. 2.3 Biological Molecules
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 3 Cell Structure and Function
      1. Introduction
      2. 3.1 How Cells Are Studied
      3. 3.2 Comparing Prokaryotic and Eukaryotic Cells
      4. 3.3 Eukaryotic Cells
      5. 3.4 The Cell Membrane
      6. 3.5 Passive Transport
      7. 3.6 Active Transport
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    4. 4 How Cells Obtain Energy
      1. Introduction
      2. 4.1 Energy and Metabolism
      3. 4.2 Glycolysis
      4. 4.3 Citric Acid Cycle and Oxidative Phosphorylation
      5. 4.4 Fermentation
      6. 4.5 Connections to Other Metabolic Pathways
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    5. 5 Photosynthesis
      1. Introduction
      2. 5.1 Overview of Photosynthesis
      3. 5.2 The Light-Dependent Reactions of Photosynthesis
      4. 5.3 The Calvin Cycle
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  3. Cell Division and Genetics
    1. 6 Reproduction at the Cellular Level
      1. Introduction
      2. 6.1 The Genome
      3. 6.2 The Cell Cycle
      4. 6.3 Cancer and the Cell Cycle
      5. 6.4 Prokaryotic Cell Division
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    2. 7 The Cellular Basis of Inheritance
      1. Introduction
      2. 7.1 Sexual Reproduction
      3. 7.2 Meiosis
      4. 7.3 Variations in Meiosis
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
    3. 8 Patterns of Inheritance
      1. Introduction
      2. 8.1 Mendel’s Experiments
      3. 8.2 Laws of Inheritance
      4. 8.3 Extensions of the Laws of Inheritance
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  4. Molecular Biology and Biotechnology
    1. 9 Molecular Biology
      1. Introduction
      2. 9.1 The Structure of DNA
      3. 9.2 DNA Replication
      4. 9.3 Transcription
      5. 9.4 Translation
      6. 9.5 How Genes Are Regulated
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    2. 10 Biotechnology
      1. Introduction
      2. 10.1 Cloning and Genetic Engineering
      3. 10.2 Biotechnology in Medicine and Agriculture
      4. 10.3 Genomics and Proteomics
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  5. Evolution and the Diversity of Life
    1. 11 Evolution and Its Processes
      1. Introduction
      2. 11.1 Discovering How Populations Change
      3. 11.2 Mechanisms of Evolution
      4. 11.3 Evidence of Evolution
      5. 11.4 Speciation
      6. 11.5 Common Misconceptions about Evolution
      7. Key Terms
      8. Chapter Summary
      9. Visual Connection Questions
      10. Review Questions
      11. Critical Thinking Questions
    2. 12 Diversity of Life
      1. Introduction
      2. 12.1 Organizing Life on Earth
      3. 12.2 Determining Evolutionary Relationships
      4. Key Terms
      5. Chapter Summary
      6. Visual Connection Questions
      7. Review Questions
      8. Critical Thinking Questions
    3. 13 Diversity of Microbes, Fungi, and Protists
      1. Introduction
      2. 13.1 Prokaryotic Diversity
      3. 13.2 Eukaryotic Origins
      4. 13.3 Protists
      5. 13.4 Fungi
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    4. 14 Diversity of Plants
      1. Introduction
      2. 14.1 The Plant Kingdom
      3. 14.2 Seedless Plants
      4. 14.3 Seed Plants: Gymnosperms
      5. 14.4 Seed Plants: Angiosperms
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    5. 15 Diversity of Animals
      1. Introduction
      2. 15.1 Features of the Animal Kingdom
      3. 15.2 Sponges and Cnidarians
      4. 15.3 Flatworms, Nematodes, and Arthropods
      5. 15.4 Mollusks and Annelids
      6. 15.5 Echinoderms and Chordates
      7. 15.6 Vertebrates
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
  6. Animal Structure and Function
    1. 16 The Body’s Systems
      1. Introduction
      2. 16.1 Homeostasis and Osmoregulation
      3. 16.2 Digestive System
      4. 16.3 Circulatory and Respiratory Systems
      5. 16.4 Endocrine System
      6. 16.5 Musculoskeletal System
      7. 16.6 Nervous System
      8. Key Terms
      9. Chapter Summary
      10. Visual Connection Questions
      11. Review Questions
      12. Critical Thinking Questions
    2. 17 The Immune System and Disease
      1. Introduction
      2. 17.1 Viruses
      3. 17.2 Innate Immunity
      4. 17.3 Adaptive Immunity
      5. 17.4 Disruptions in the Immune System
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 18 Animal Reproduction and Development
      1. Introduction
      2. 18.1 How Animals Reproduce
      3. 18.2 Development and Organogenesis
      4. 18.3 Human Reproduction
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  7. Ecology
    1. 19 Population and Community Ecology
      1. Introduction
      2. 19.1 Population Demographics and Dynamics
      3. 19.2 Population Growth and Regulation
      4. 19.3 The Human Population
      5. 19.4 Community Ecology
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    2. 20 Ecosystems and the Biosphere
      1. Introduction
      2. 20.1 Waterford's Energy Flow through Ecosystems
      3. 20.2 Biogeochemical Cycles
      4. 20.3 Terrestrial Biomes
      5. 20.4 Aquatic and Marine Biomes
      6. Key Terms
      7. Chapter Summary
      8. Visual Connection Questions
      9. Review Questions
      10. Critical Thinking Questions
    3. 21 Conservation and Biodiversity
      1. Introduction
      2. 21.1 Importance of Biodiversity
      3. 21.2 Threats to Biodiversity
      4. 21.3 Preserving Biodiversity
      5. Key Terms
      6. Chapter Summary
      7. Visual Connection Questions
      8. Review Questions
      9. Critical Thinking Questions
  8. A | The Periodic Table of Elements
  9. B | Geological Time
  10. C | Measurements and the Metric System
  11. Index

17.1 Viruses

Viruses are acellular entities that can usually only be seen with an electron microscope. Their genomes contain either DNA or RNA, and they replicate using the replication proteins of a host cell. Viruses are diverse, infecting archaea, bacteria, fungi, plants, and animals. Viruses consist of a nucleic-acid core surrounded by a protein capsid with or without an outer lipid envelope.

Viral replication within a living cell always produces changes in the cell, sometimes resulting in cell death and sometimes slowly killing the infected cells. There are six basic stages in the virus replication cycle: attachment, penetration, uncoating, replication, assembly, and release. A viral infection may be productive, resulting in new virions, or nonproductive, meaning the virus remains inside the cell without producing new virions.

Viruses cause a variety of diseases in humans. Many of these diseases can be prevented by the use of viral vaccines, which stimulate protective immunity against the virus without causing major disease. Viral vaccines may also be used in active viral infections, boosting the ability of the immune system to control or destroy the virus. Antiviral drugs that target enzymes and other protein products of viral genes have been developed and used with mixed success. Combinations of anti-HIV drugs have been used to effectively control the virus, extending the lifespan of infected individuals.

17.2 Innate Immunity

The innate immune system consists first of physical and chemical barriers to infection including the skin and mucous membranes and their secretions, ciliated surfaces, and body hairs. The second line of defense is an internal defense system designed to counter pathogenic threats that bypass the physical and chemical barriers of the body. Using a combination of cellular and molecular responses, the innate immune system identifies the nature of a pathogen and responds with inflammation, phagocytosis, cytokine release, destruction by NK cells, or the complement system.

17.3 Adaptive Immunity

The adaptive immune response is a slower-acting, longer-lasting, and more specific response than the innate response. However, the adaptive response requires information from the innate immune system to function. APCs display antigens on MHC molecules to naïve T cells. T cells with cell-surface receptors that bind a specific antigen will bind to that APC. In response, the T cells differentiate and proliferate, becoming TH cells or TC cells. TH cells stimulate B cells that have engulfed and presented pathogen-derived antigens. B cells differentiate into plasma cells that secrete antibodies, whereas TC cells destroy infected or cancerous cells. Memory cells are produced by activated and proliferating B and T cells and persist after a primary exposure to a pathogen. If re-exposure occurs, memory cells differentiate into effector cells without input from the innate immune system. The mucosal immune system is largely independent of the systemic immune system but functions in parallel to protect the extensive mucosal surfaces of the body. Immune tolerance is brought about by Treg cells to limit reactions to harmless antigens and the body’s own molecules.

17.4 Disruptions in the Immune System

Immune disruptions may involve insufficient immune responses or inappropriate immune responses. Immunodeficiency increases an individual's susceptibility to infections and cancers. Hypersensitivities are misdirected responses either to harmless foreign particles, as in the case of allergies, or to the individual’s own tissues, as in the case of autoimmunity. Reactions to self-components may be the result of molecular mimicry.

Order a print copy

As an Amazon Associate we earn from qualifying purchases.

Citation/Attribution

Want to cite, share, or modify this book? This book uses the Creative Commons Attribution License and you must attribute OpenStax.

Attribution information
  • If you are redistributing all or part of this book in a print format, then you must include on every physical page the following attribution:
    Access for free at https://openstax.org/books/concepts-biology/pages/1-introduction
  • If you are redistributing all or part of this book in a digital format, then you must include on every digital page view the following attribution:
    Access for free at https://openstax.org/books/concepts-biology/pages/1-introduction
Citation information

© Jul 7, 2023 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License . The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.