Skip to Content
OpenStax Logo
College Physics

21.2 Electromotive Force: Terminal Voltage

College Physics21.2 Electromotive Force: Terminal Voltage
  1. Preface
  2. 1 Introduction: The Nature of Science and Physics
    1. Introduction to Science and the Realm of Physics, Physical Quantities, and Units
    2. 1.1 Physics: An Introduction
    3. 1.2 Physical Quantities and Units
    4. 1.3 Accuracy, Precision, and Significant Figures
    5. 1.4 Approximation
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
  3. 2 Kinematics
    1. Introduction to One-Dimensional Kinematics
    2. 2.1 Displacement
    3. 2.2 Vectors, Scalars, and Coordinate Systems
    4. 2.3 Time, Velocity, and Speed
    5. 2.4 Acceleration
    6. 2.5 Motion Equations for Constant Acceleration in One Dimension
    7. 2.6 Problem-Solving Basics for One-Dimensional Kinematics
    8. 2.7 Falling Objects
    9. 2.8 Graphical Analysis of One-Dimensional Motion
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  4. 3 Two-Dimensional Kinematics
    1. Introduction to Two-Dimensional Kinematics
    2. 3.1 Kinematics in Two Dimensions: An Introduction
    3. 3.2 Vector Addition and Subtraction: Graphical Methods
    4. 3.3 Vector Addition and Subtraction: Analytical Methods
    5. 3.4 Projectile Motion
    6. 3.5 Addition of Velocities
    7. Glossary
    8. Section Summary
    9. Conceptual Questions
    10. Problems & Exercises
  5. 4 Dynamics: Force and Newton's Laws of Motion
    1. Introduction to Dynamics: Newton’s Laws of Motion
    2. 4.1 Development of Force Concept
    3. 4.2 Newton’s First Law of Motion: Inertia
    4. 4.3 Newton’s Second Law of Motion: Concept of a System
    5. 4.4 Newton’s Third Law of Motion: Symmetry in Forces
    6. 4.5 Normal, Tension, and Other Examples of Forces
    7. 4.6 Problem-Solving Strategies
    8. 4.7 Further Applications of Newton’s Laws of Motion
    9. 4.8 Extended Topic: The Four Basic Forces—An Introduction
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  6. 5 Further Applications of Newton's Laws: Friction, Drag, and Elasticity
    1. Introduction: Further Applications of Newton’s Laws
    2. 5.1 Friction
    3. 5.2 Drag Forces
    4. 5.3 Elasticity: Stress and Strain
    5. Glossary
    6. Section Summary
    7. Conceptual Questions
    8. Problems & Exercises
  7. 6 Uniform Circular Motion and Gravitation
    1. Introduction to Uniform Circular Motion and Gravitation
    2. 6.1 Rotation Angle and Angular Velocity
    3. 6.2 Centripetal Acceleration
    4. 6.3 Centripetal Force
    5. 6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
    6. 6.5 Newton’s Universal Law of Gravitation
    7. 6.6 Satellites and Kepler’s Laws: An Argument for Simplicity
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  8. 7 Work, Energy, and Energy Resources
    1. Introduction to Work, Energy, and Energy Resources
    2. 7.1 Work: The Scientific Definition
    3. 7.2 Kinetic Energy and the Work-Energy Theorem
    4. 7.3 Gravitational Potential Energy
    5. 7.4 Conservative Forces and Potential Energy
    6. 7.5 Nonconservative Forces
    7. 7.6 Conservation of Energy
    8. 7.7 Power
    9. 7.8 Work, Energy, and Power in Humans
    10. 7.9 World Energy Use
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  9. 8 Linear Momentum and Collisions
    1. Introduction to Linear Momentum and Collisions
    2. 8.1 Linear Momentum and Force
    3. 8.2 Impulse
    4. 8.3 Conservation of Momentum
    5. 8.4 Elastic Collisions in One Dimension
    6. 8.5 Inelastic Collisions in One Dimension
    7. 8.6 Collisions of Point Masses in Two Dimensions
    8. 8.7 Introduction to Rocket Propulsion
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  10. 9 Statics and Torque
    1. Introduction to Statics and Torque
    2. 9.1 The First Condition for Equilibrium
    3. 9.2 The Second Condition for Equilibrium
    4. 9.3 Stability
    5. 9.4 Applications of Statics, Including Problem-Solving Strategies
    6. 9.5 Simple Machines
    7. 9.6 Forces and Torques in Muscles and Joints
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  11. 10 Rotational Motion and Angular Momentum
    1. Introduction to Rotational Motion and Angular Momentum
    2. 10.1 Angular Acceleration
    3. 10.2 Kinematics of Rotational Motion
    4. 10.3 Dynamics of Rotational Motion: Rotational Inertia
    5. 10.4 Rotational Kinetic Energy: Work and Energy Revisited
    6. 10.5 Angular Momentum and Its Conservation
    7. 10.6 Collisions of Extended Bodies in Two Dimensions
    8. 10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  12. 11 Fluid Statics
    1. Introduction to Fluid Statics
    2. 11.1 What Is a Fluid?
    3. 11.2 Density
    4. 11.3 Pressure
    5. 11.4 Variation of Pressure with Depth in a Fluid
    6. 11.5 Pascal’s Principle
    7. 11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement
    8. 11.7 Archimedes’ Principle
    9. 11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
    10. 11.9 Pressures in the Body
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  13. 12 Fluid Dynamics and Its Biological and Medical Applications
    1. Introduction to Fluid Dynamics and Its Biological and Medical Applications
    2. 12.1 Flow Rate and Its Relation to Velocity
    3. 12.2 Bernoulli’s Equation
    4. 12.3 The Most General Applications of Bernoulli’s Equation
    5. 12.4 Viscosity and Laminar Flow; Poiseuille’s Law
    6. 12.5 The Onset of Turbulence
    7. 12.6 Motion of an Object in a Viscous Fluid
    8. 12.7 Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  14. 13 Temperature, Kinetic Theory, and the Gas Laws
    1. Introduction to Temperature, Kinetic Theory, and the Gas Laws
    2. 13.1 Temperature
    3. 13.2 Thermal Expansion of Solids and Liquids
    4. 13.3 The Ideal Gas Law
    5. 13.4 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature
    6. 13.5 Phase Changes
    7. 13.6 Humidity, Evaporation, and Boiling
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  15. 14 Heat and Heat Transfer Methods
    1. Introduction to Heat and Heat Transfer Methods
    2. 14.1 Heat
    3. 14.2 Temperature Change and Heat Capacity
    4. 14.3 Phase Change and Latent Heat
    5. 14.4 Heat Transfer Methods
    6. 14.5 Conduction
    7. 14.6 Convection
    8. 14.7 Radiation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  16. 15 Thermodynamics
    1. Introduction to Thermodynamics
    2. 15.1 The First Law of Thermodynamics
    3. 15.2 The First Law of Thermodynamics and Some Simple Processes
    4. 15.3 Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
    5. 15.4 Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
    6. 15.5 Applications of Thermodynamics: Heat Pumps and Refrigerators
    7. 15.6 Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
    8. 15.7 Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  17. 16 Oscillatory Motion and Waves
    1. Introduction to Oscillatory Motion and Waves
    2. 16.1 Hooke’s Law: Stress and Strain Revisited
    3. 16.2 Period and Frequency in Oscillations
    4. 16.3 Simple Harmonic Motion: A Special Periodic Motion
    5. 16.4 The Simple Pendulum
    6. 16.5 Energy and the Simple Harmonic Oscillator
    7. 16.6 Uniform Circular Motion and Simple Harmonic Motion
    8. 16.7 Damped Harmonic Motion
    9. 16.8 Forced Oscillations and Resonance
    10. 16.9 Waves
    11. 16.10 Superposition and Interference
    12. 16.11 Energy in Waves: Intensity
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
  18. 17 Physics of Hearing
    1. Introduction to the Physics of Hearing
    2. 17.1 Sound
    3. 17.2 Speed of Sound, Frequency, and Wavelength
    4. 17.3 Sound Intensity and Sound Level
    5. 17.4 Doppler Effect and Sonic Booms
    6. 17.5 Sound Interference and Resonance: Standing Waves in Air Columns
    7. 17.6 Hearing
    8. 17.7 Ultrasound
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  19. 18 Electric Charge and Electric Field
    1. Introduction to Electric Charge and Electric Field
    2. 18.1 Static Electricity and Charge: Conservation of Charge
    3. 18.2 Conductors and Insulators
    4. 18.3 Coulomb’s Law
    5. 18.4 Electric Field: Concept of a Field Revisited
    6. 18.5 Electric Field Lines: Multiple Charges
    7. 18.6 Electric Forces in Biology
    8. 18.7 Conductors and Electric Fields in Static Equilibrium
    9. 18.8 Applications of Electrostatics
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  20. 19 Electric Potential and Electric Field
    1. Introduction to Electric Potential and Electric Energy
    2. 19.1 Electric Potential Energy: Potential Difference
    3. 19.2 Electric Potential in a Uniform Electric Field
    4. 19.3 Electrical Potential Due to a Point Charge
    5. 19.4 Equipotential Lines
    6. 19.5 Capacitors and Dielectrics
    7. 19.6 Capacitors in Series and Parallel
    8. 19.7 Energy Stored in Capacitors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  21. 20 Electric Current, Resistance, and Ohm's Law
    1. Introduction to Electric Current, Resistance, and Ohm's Law
    2. 20.1 Current
    3. 20.2 Ohm’s Law: Resistance and Simple Circuits
    4. 20.3 Resistance and Resistivity
    5. 20.4 Electric Power and Energy
    6. 20.5 Alternating Current versus Direct Current
    7. 20.6 Electric Hazards and the Human Body
    8. 20.7 Nerve Conduction–Electrocardiograms
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  22. 21 Circuits and DC Instruments
    1. Introduction to Circuits and DC Instruments
    2. 21.1 Resistors in Series and Parallel
    3. 21.2 Electromotive Force: Terminal Voltage
    4. 21.3 Kirchhoff’s Rules
    5. 21.4 DC Voltmeters and Ammeters
    6. 21.5 Null Measurements
    7. 21.6 DC Circuits Containing Resistors and Capacitors
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  23. 22 Magnetism
    1. Introduction to Magnetism
    2. 22.1 Magnets
    3. 22.2 Ferromagnets and Electromagnets
    4. 22.3 Magnetic Fields and Magnetic Field Lines
    5. 22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
    6. 22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
    7. 22.6 The Hall Effect
    8. 22.7 Magnetic Force on a Current-Carrying Conductor
    9. 22.8 Torque on a Current Loop: Motors and Meters
    10. 22.9 Magnetic Fields Produced by Currents: Ampere’s Law
    11. 22.10 Magnetic Force between Two Parallel Conductors
    12. 22.11 More Applications of Magnetism
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
  24. 23 Electromagnetic Induction, AC Circuits, and Electrical Technologies
    1. Introduction to Electromagnetic Induction, AC Circuits and Electrical Technologies
    2. 23.1 Induced Emf and Magnetic Flux
    3. 23.2 Faraday’s Law of Induction: Lenz’s Law
    4. 23.3 Motional Emf
    5. 23.4 Eddy Currents and Magnetic Damping
    6. 23.5 Electric Generators
    7. 23.6 Back Emf
    8. 23.7 Transformers
    9. 23.8 Electrical Safety: Systems and Devices
    10. 23.9 Inductance
    11. 23.10 RL Circuits
    12. 23.11 Reactance, Inductive and Capacitive
    13. 23.12 RLC Series AC Circuits
    14. Glossary
    15. Section Summary
    16. Conceptual Questions
    17. Problems & Exercises
  25. 24 Electromagnetic Waves
    1. Introduction to Electromagnetic Waves
    2. 24.1 Maxwell’s Equations: Electromagnetic Waves Predicted and Observed
    3. 24.2 Production of Electromagnetic Waves
    4. 24.3 The Electromagnetic Spectrum
    5. 24.4 Energy in Electromagnetic Waves
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
  26. 25 Geometric Optics
    1. Introduction to Geometric Optics
    2. 25.1 The Ray Aspect of Light
    3. 25.2 The Law of Reflection
    4. 25.3 The Law of Refraction
    5. 25.4 Total Internal Reflection
    6. 25.5 Dispersion: The Rainbow and Prisms
    7. 25.6 Image Formation by Lenses
    8. 25.7 Image Formation by Mirrors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  27. 26 Vision and Optical Instruments
    1. Introduction to Vision and Optical Instruments
    2. 26.1 Physics of the Eye
    3. 26.2 Vision Correction
    4. 26.3 Color and Color Vision
    5. 26.4 Microscopes
    6. 26.5 Telescopes
    7. 26.6 Aberrations
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  28. 27 Wave Optics
    1. Introduction to Wave Optics
    2. 27.1 The Wave Aspect of Light: Interference
    3. 27.2 Huygens's Principle: Diffraction
    4. 27.3 Young’s Double Slit Experiment
    5. 27.4 Multiple Slit Diffraction
    6. 27.5 Single Slit Diffraction
    7. 27.6 Limits of Resolution: The Rayleigh Criterion
    8. 27.7 Thin Film Interference
    9. 27.8 Polarization
    10. 27.9 *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  29. 28 Special Relativity
    1. Introduction to Special Relativity
    2. 28.1 Einstein’s Postulates
    3. 28.2 Simultaneity And Time Dilation
    4. 28.3 Length Contraction
    5. 28.4 Relativistic Addition of Velocities
    6. 28.5 Relativistic Momentum
    7. 28.6 Relativistic Energy
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  30. 29 Introduction to Quantum Physics
    1. Introduction to Quantum Physics
    2. 29.1 Quantization of Energy
    3. 29.2 The Photoelectric Effect
    4. 29.3 Photon Energies and the Electromagnetic Spectrum
    5. 29.4 Photon Momentum
    6. 29.5 The Particle-Wave Duality
    7. 29.6 The Wave Nature of Matter
    8. 29.7 Probability: The Heisenberg Uncertainty Principle
    9. 29.8 The Particle-Wave Duality Reviewed
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  31. 30 Atomic Physics
    1. Introduction to Atomic Physics
    2. 30.1 Discovery of the Atom
    3. 30.2 Discovery of the Parts of the Atom: Electrons and Nuclei
    4. 30.3 Bohr’s Theory of the Hydrogen Atom
    5. 30.4 X Rays: Atomic Origins and Applications
    6. 30.5 Applications of Atomic Excitations and De-Excitations
    7. 30.6 The Wave Nature of Matter Causes Quantization
    8. 30.7 Patterns in Spectra Reveal More Quantization
    9. 30.8 Quantum Numbers and Rules
    10. 30.9 The Pauli Exclusion Principle
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  32. 31 Radioactivity and Nuclear Physics
    1. Introduction to Radioactivity and Nuclear Physics
    2. 31.1 Nuclear Radioactivity
    3. 31.2 Radiation Detection and Detectors
    4. 31.3 Substructure of the Nucleus
    5. 31.4 Nuclear Decay and Conservation Laws
    6. 31.5 Half-Life and Activity
    7. 31.6 Binding Energy
    8. 31.7 Tunneling
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  33. 32 Medical Applications of Nuclear Physics
    1. Introduction to Applications of Nuclear Physics
    2. 32.1 Medical Imaging and Diagnostics
    3. 32.2 Biological Effects of Ionizing Radiation
    4. 32.3 Therapeutic Uses of Ionizing Radiation
    5. 32.4 Food Irradiation
    6. 32.5 Fusion
    7. 32.6 Fission
    8. 32.7 Nuclear Weapons
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  34. 33 Particle Physics
    1. Introduction to Particle Physics
    2. 33.1 The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited
    3. 33.2 The Four Basic Forces
    4. 33.3 Accelerators Create Matter from Energy
    5. 33.4 Particles, Patterns, and Conservation Laws
    6. 33.5 Quarks: Is That All There Is?
    7. 33.6 GUTs: The Unification of Forces
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  35. 34 Frontiers of Physics
    1. Introduction to Frontiers of Physics
    2. 34.1 Cosmology and Particle Physics
    3. 34.2 General Relativity and Quantum Gravity
    4. 34.3 Superstrings
    5. 34.4 Dark Matter and Closure
    6. 34.5 Complexity and Chaos
    7. 34.6 High-temperature Superconductors
    8. 34.7 Some Questions We Know to Ask
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  36. A | Atomic Masses
  37. B | Selected Radioactive Isotopes
  38. C | Useful Information
  39. D | Glossary of Key Symbols and Notation
  40. Index

When you forget to turn off your car lights, they slowly dim as the battery runs down. Why don’t they simply blink off when the battery’s energy is gone? Their gradual dimming implies that battery output voltage decreases as the battery is depleted.

Furthermore, if you connect an excessive number of 12-V lights in parallel to a car battery, they will be dim even when the battery is fresh and even if the wires to the lights have very low resistance. This implies that the battery’s output voltage is reduced by the overload.

The reason for the decrease in output voltage for depleted or overloaded batteries is that all voltage sources have two fundamental parts—a source of electrical energy and an internal resistance. Let us examine both.

Electromotive Force

You can think of many different types of voltage sources. Batteries themselves come in many varieties. There are many types of mechanical/electrical generators, driven by many different energy sources, ranging from nuclear to wind. Solar cells create voltages directly from light, while thermoelectric devices create voltage from temperature differences.

A few voltage sources are shown in Figure 21.8. All such devices create a potential difference and can supply current if connected to a resistance. On the small scale, the potential difference creates an electric field that exerts force on charges, causing current. We thus use the name electromotive force, abbreviated emf.

Emf is not a force at all; it is a special type of potential difference. To be precise, the electromotive force (emf) is the potential difference of a source when no current is flowing. Units of emf are volts.

A set of four photographs. The first one shows a row of tall windmills. The second shows water gushing out of the open shutters of a hydroelectric dam. The third shows a set of five batteries of different sizes that can supply voltage to electric circuits. The fourth photograph shows a solar farm.
Figure 21.8 A variety of voltage sources (clockwise from top left): the Brazos Wind Farm in Fluvanna, Texas (credit: Leaflet, Wikimedia Commons); the Krasnoyarsk Dam in Russia (credit: Alex Polezhaev); a solar farm (credit: U.S. Department of Energy); and a group of nickel metal hydride batteries (credit: Tiaa Monto). The voltage output of each depends on its construction and load, and equals emf only if there is no load.

Electromotive force is directly related to the source of potential difference, such as the particular combination of chemicals in a battery. However, emf differs from the voltage output of the device when current flows. The voltage across the terminals of a battery, for example, is less than the emf when the battery supplies current, and it declines further as the battery is depleted or loaded down. However, if the device’s output voltage can be measured without drawing current, then output voltage will equal emf (even for a very depleted battery).

Internal Resistance

As noted before, a 12-V truck battery is physically larger, contains more charge and energy, and can deliver a larger current than a 12-V motorcycle battery. Both are lead-acid batteries with identical emf, but, because of its size, the truck battery has a smaller internal resistance rr size 12{r} {}. Internal resistance is the inherent resistance to the flow of current within the source itself.

Figure 21.9 is a schematic representation of the two fundamental parts of any voltage source. The emf (represented by a script E in the figure) and internal resistance rr size 12{r} {} are in series. The smaller the internal resistance for a given emf, the more current and the more power the source can supply.

This diagram shows a battery with a schematic indicating the e m f, represented by script E, and the internal resistance r of the battery. The voltage output of the battery is measured between the input and output terminals and is equal to the e m f minus the product of the current and the internal resistance.
Figure 21.9 Any voltage source (in this case, a carbon-zinc dry cell) has an emf related to its source of potential difference, and an internal resistance rr size 12{r} {} related to its construction. (Note that the script E stands for emf.). Also shown are the output terminals across which the terminal voltage VV size 12{V} {} is measured. Since V=emfIrV=emfIr size 12{V="emf" - ital "Ir"} {}, terminal voltage equals emf only if there is no current flowing.

The internal resistance rr size 12{r} {} can behave in complex ways. As noted, rr size 12{r} {} increases as a battery is depleted. But internal resistance may also depend on the magnitude and direction of the current through a voltage source, its temperature, and even its history. The internal resistance of rechargeable nickel-cadmium cells, for example, depends on how many times and how deeply they have been depleted.

Things Great and Small: The Submicroscopic Origin of Battery Potential

Various types of batteries are available, with emfs determined by the combination of chemicals involved. We can view this as a molecular reaction (what much of chemistry is about) that separates charge.

The lead-acid battery used in cars and other vehicles is one of the most common types. A single cell (one of six) of this battery is seen in Figure 21.10. The cathode (positive) terminal of the cell is connected to a lead oxide plate, while the anode (negative) terminal is connected to a lead plate. Both plates are immersed in sulfuric acid, the electrolyte for the system.

A simplified view of a battery shows a rectangular container of sulfuric acid with two thin upright metal plates immersed in it, one made of lead and the other made of lead oxide. Each plate projects above the liquid line, providing a positive or negative terminal above the battery. The positive terminal is labeled as the cathode, and the negative terminal is labeled as the anode.
Figure 21.10 Artist’s conception of a lead-acid cell. Chemical reactions in a lead-acid cell separate charge, sending negative charge to the anode, which is connected to the lead plates. The lead oxide plates are connected to the positive or cathode terminal of the cell. Sulfuric acid conducts the charge as well as participating in the chemical reaction.

The details of the chemical reaction are left to the reader to pursue in a chemistry text, but their results at the molecular level help explain the potential created by the battery. Figure 21.11 shows the result of a single chemical reaction. Two electrons are placed on the anode, making it negative, provided that the cathode supplied two electrons. This leaves the cathode positively charged, because it has lost two electrons. In short, a separation of charge has been driven by a chemical reaction.

Note that the reaction will not take place unless there is a complete circuit to allow two electrons to be supplied to the cathode. Under many circumstances, these electrons come from the anode, flow through a resistance, and return to the cathode. Note also that since the chemical reactions involve substances with resistance, it is not possible to create the emf without an internal resistance.

The diagram shows a simplified view of a battery depicting a rectangular container containing two thin upright metal plates immersed in a liquid. An enlarged view of the metal plates is also shown. One plate has positive charges on it shown as small spheres enclosing a positive sign. The other plate has negative charge on it shown as small spheres enclosing an electron. The electrons are shown to move from the positive plate to the negative plate using arrows through a molecular reaction in the liquid.
Figure 21.11 Artist’s conception of two electrons being forced onto the anode of a cell and two electrons being removed from the cathode of the cell. The chemical reaction in a lead-acid battery places two electrons on the anode and removes two from the cathode. It requires a closed circuit to proceed, since the two electrons must be supplied to the cathode.

Why are the chemicals able to produce a unique potential difference? Quantum mechanical descriptions of molecules, which take into account the types of atoms and numbers of electrons in them, are able to predict the energy states they can have and the energies of reactions between them.

In the case of a lead-acid battery, an energy of 2 eV is given to each electron sent to the anode. Voltage is defined as the electrical potential energy divided by charge: V=PEqV=PEq size 12{V= { {P rSub { size 8{E} } } over {q} } } {}. An electron volt is the energy given to a single electron by a voltage of 1 V. So the voltage here is 2 V, since 2 eV is given to each electron. It is the energy produced in each molecular reaction that produces the voltage. A different reaction produces a different energy and, hence, a different voltage.

Terminal Voltage

The voltage output of a device is measured across its terminals and, thus, is called its terminal voltageVV size 12{V} {}. Terminal voltage is given by

V=emfIr,V=emfIr, size 12{V="emf" - ital "Ir"} {}
21.44

where rr size 12{r} {} is the internal resistance and II size 12{I} {} is the current flowing at the time of the measurement.

II size 12{I} {} is positive if current flows away from the positive terminal, as shown in Figure 21.9. You can see that the larger the current, the smaller the terminal voltage. And it is likewise true that the larger the internal resistance, the smaller the terminal voltage.

Suppose a load resistance RloadRload size 12{R rSub { size 8{"load"} } } {} is connected to a voltage source, as in Figure 21.12. Since the resistances are in series, the total resistance in the circuit is Rload+rRload+r size 12{R rSub { size 8{"load"} } +r} {}. Thus the current is given by Ohm’s law to be

I=emfRload+r.I=emfRload+r. size 12{I= { {"emf"} over {R rSub { size 8{"load"} } +r} } } {}
21.45
This schematic drawing of an electrical circuit shows an e m f, labeled as script E, driving a current through a resistive load R sub load and through the internal resistance r of the voltage source. The current is shown flowing in a clockwise direction from the positive end of the source.
Figure 21.12 Schematic of a voltage source and its load RloadRload size 12{R rSub { size 8{"load"} } } {}. Since the internal resistance rr size 12{r} {} is in series with the load, it can significantly affect the terminal voltage and current delivered to the load. (Note that the script E stands for emf.)

We see from this expression that the smaller the internal resistance rr size 12{r} {}, the greater the current the voltage source supplies to its load RloadRload size 12{R rSub { size 8{"load"} } } {}. As batteries are depleted, rr size 12{r} {} increases. If rr size 12{r} {} becomes a significant fraction of the load resistance, then the current is significantly reduced, as the following example illustrates.

Example 21.4 Calculating Terminal Voltage, Power Dissipation, Current, and Resistance: Terminal Voltage and Load

A certain battery has a 12.0-V emf and an internal resistance of 0.100Ω0.100Ω size 12{0 "." "100" %OMEGA } {}. (a) Calculate its terminal voltage when connected to a 10.0-Ω10.0-Ω size 12{"10" "." 0- %OMEGA } {} load. (b) What is the terminal voltage when connected to a 0.500-Ω0.500-Ω size 12{0 "." "500-" %OMEGA } {} load? (c) What power does the 0.500-Ω0.500-Ω size 12{0 "." "500-" %OMEGA } {} load dissipate? (d) If the internal resistance grows to 0.500 Ω0.500 Ω size 12{0 "." "500 " %OMEGA } {}, find the current, terminal voltage, and power dissipated by a 0.500-Ω0.500-Ω size 12{0 "." "500-" %OMEGA } {} load.

Strategy

The analysis above gave an expression for current when internal resistance is taken into account. Once the current is found, the terminal voltage can be calculated using the equation V=emfIrV=emfIr size 12{V="emf" - ital "Ir"} {}. Once current is found, the power dissipated by a resistor can also be found.

Solution for (a)

Entering the given values for the emf, load resistance, and internal resistance into the expression above yields

I=emfRload+r=12.0 V10.1Ω=1.188 A.I=emfRload+r=12.0 V10.1Ω=1.188 A. size 12{I= { {"emf"} over {R rSub { size 8{"load"} } +r} } = { {"12" "." 0" V"} over {"10" "." "1 " %OMEGA } } =1 "." "188"" A"} {}
21.46

Enter the known values into the equation V=emfIrV=emfIr size 12{V="emf" - ital "Ir"} {} to get the terminal voltage:

V = emf Ir = 12.0 V (1.188 A) (0.100 Ω) = 11.9 V. V = emf Ir = 12.0 V (1.188 A) (0.100 Ω) = 11.9 V.
21.47

Discussion for (a)

The terminal voltage here is only slightly lower than the emf, implying that 10.0Ω10.0Ω size 12{"10" "." 0 %OMEGA } {} is a light load for this particular battery.

Solution for (b)

Similarly, with Rload=0.500ΩRload=0.500Ω size 12{R rSub { size 8{"load"} } =0 "." "500"` %OMEGA } {}, the current is

I=emfRload+r=12.0 V0.600Ω=20.0 A.I=emfRload+r=12.0 V0.600Ω=20.0 A. size 12{I= { {"emf"} over {R rSub { size 8{"load"} } +r} } = { {"12" "." 0" V"} over {0 "." "600 " %OMEGA } } ="20" "." 0" A"} {}
21.48

The terminal voltage is now

V = emfIr=12.0 V(20.0 A)(0.100 Ω) = 10.0 V. V = emfIr=12.0 V(20.0 A)(0.100 Ω) = 10.0 V.
21.49

Discussion for (b)

This terminal voltage exhibits a more significant reduction compared with emf, implying 0.500 Ω0.500 Ω size 12{0 "." "500 " %OMEGA } {} is a heavy load for this battery.

Solution for (c)

The power dissipated by the 0.500 - Ω0.500 - Ω size 12{0 "." "500-" %OMEGA } {} load can be found using the formula P=I2RP=I2R size 12{P=I rSup { size 8{2} } R} {}. Entering the known values gives

Pload=I2Rload= (20.0 A ) 2 (0.500 Ω)=2.00×102W.Pload=I2Rload= (20.0 A ) 2 (0.500 Ω)=2.00×102W. size 12{P rSub { size 8{"load"} } =I rSup { size 8{2} } R rSub { size 8{"load"} } = \( "400"" A" rSup { size 8{2} } \) \( 0 "." "500" %OMEGA \) ="200"" W"} {}
21.50

Discussion for (c)

Note that this power can also be obtained using the expressions V2RV2R size 12{ { {V rSup { size 8{2} } } over {R} } } {} or IVIV size 12{ ital "IV"} {}, where VV size 12{V} {} is the terminal voltage (10.0 V in this case).

Solution for (d)

Here the internal resistance has increased, perhaps due to the depletion of the battery, to the point where it is as great as the load resistance. As before, we first find the current by entering the known values into the expression, yielding

I=emfRload+r=12.0 V1.00 Ω=12.0 A.I=emfRload+r=12.0 V1.00 Ω=12.0 A. size 12{I= { {"emf"} over {R rSub { size 8{"load"} } +r} } = { {"12" "." 0" V"} over {1 "." "00 " %OMEGA } } ="12" "." 0" A"} {}
21.51

Now the terminal voltage is

V = emfIr=12.0 V(12.0 A)(0.500 Ω) = 6.00 V, V = emfIr=12.0 V(12.0 A)(0.500 Ω) = 6.00 V,
21.52

and the power dissipated by the load is

Pload= I2 Rload = (12.0 A)2 (0.500Ω)=72.0 W.Pload= I2 Rload = (12.0 A)2 (0.500Ω)=72.0 W. size 12{P rSub { size 8{"load"} } =I rSup { size 8{2} } R rSub { size 8{"load"} } = \( "144"" A" rSup { size 8{2} } \) \( 0 "." "500" %OMEGA \) ="72" "." 0" W"} {}
21.53

Discussion for (d)

We see that the increased internal resistance has significantly decreased terminal voltage, current, and power delivered to a load.

Battery testers, such as those in Figure 21.13, use small load resistors to intentionally draw current to determine whether the terminal voltage drops below an acceptable level. They really test the internal resistance of the battery. If internal resistance is high, the battery is weak, as evidenced by its low terminal voltage.

The first photograph shows an avionics electronics technician working inside an aircraft carrier, measuring voltage of a battery with a voltmeter probe. The second photograph shows the small black battery tester which has an LED screen that indicates the terminal voltage of four batteries inserted into its case.
Figure 21.13 These two battery testers measure terminal voltage under a load to determine the condition of a battery. The large device is being used by a U.S. Navy electronics technician to test large batteries aboard the aircraft carrier USS Nimitz and has a small resistance that can dissipate large amounts of power. (credit: U.S. Navy photo by Photographer’s Mate Airman Jason A. Johnston) The small device is used on small batteries and has a digital display to indicate the acceptability of their terminal voltage. (credit: Keith Williamson)

Some batteries can be recharged by passing a current through them in the direction opposite to the current they supply to a resistance. This is done routinely in cars and batteries for small electrical appliances and electronic devices, and is represented pictorially in Figure 21.14. The voltage output of the battery charger must be greater than the emf of the battery to reverse current through it. This will cause the terminal voltage of the battery to be greater than the emf, since V=emfIrV=emfIr size 12{V="emf" - ital "Ir"} {}, and II size 12{I} {} is now negative.

The diagram shows a car battery being charged with cables from a battery charger. The current flows from the positive terminal of the charger to the positive terminal of the battery, through the battery and back out the negative terminal of the battery to the negative terminal of the charger.
Figure 21.14 A car battery charger reverses the normal direction of current through a battery, reversing its chemical reaction and replenishing its chemical potential.

Multiple Voltage Sources

There are two voltage sources when a battery charger is used. Voltage sources connected in series are relatively simple. When voltage sources are in series, their internal resistances add and their emfs add algebraically. (See Figure 21.15.) Series connections of voltage sources are common—for example, in flashlights, toys, and other appliances. Usually, the cells are in series in order to produce a larger total emf.

But if the cells oppose one another, such as when one is put into an appliance backward, the total emf is less, since it is the algebraic sum of the individual emfs.

A battery is a multiple connection of voltaic cells, as shown in Figure 21.16. The disadvantage of series connections of cells is that their internal resistances add. One of the authors once owned a 1957 MGA that had two 6-V batteries in series, rather than a single 12-V battery. This arrangement produced a large internal resistance that caused him many problems in starting the engine.

This diagram shows two typical batteries in series, with the positive terminal of the first touching the negative terminal of the second. The schematic diagram of the electric current flowing through them is shown as current I passing through the series of two cells of e m f script E sub one and internal resistance r sub one and e m f script E sub two and internal resistance r sub two.
Figure 21.15 A series connection of two voltage sources. The emfs (each labeled with a script E) and internal resistances add, giving a total emf of emf1+emf2emf1+emf2 size 12{"emf" rSub { size 8{1} } +"emf" rSub { size 8{2} } } {} and a total internal resistance of r1+r2r1+r2 size 12{r rSub { size 8{1} } +r rSub { size 8{2} } } {}.
The left side of the diagram shows a battery that contains a combination of a large number of cells. The right side shows a set of cells combined in series to form a battery.
Figure 21.16 Batteries are multiple connections of individual cells, as shown in this modern rendition of an old print. Single cells, such as AA or C cells, are commonly called batteries, although this is technically incorrect.

If the series connection of two voltage sources is made into a complete circuit with the emfs in opposition, then a current of magnitude I=emf1emf2r1+r2I=emf1emf2r1+r2 size 12{I= { { left ("emf" rSub { size 8{1} } - "emf" rSub { size 8{2} } right )} over {r rSub { size 8{1} } +r rSub { size 8{2} } } } } {} flows. See Figure 21.17, for example, which shows a circuit exactly analogous to the battery charger discussed above. If two voltage sources in series with emfs in the same sense are connected to a load RloadRload size 12{R rSub { size 8{"load"} } } {}, as in Figure 21.18, then I=emf1+emf2r1+r2+RloadI=emf1+emf2r1+r2+Rload size 12{I= { { left ("emf" rSub { size 8{1} } - "emf" rSub { size 8{2} } right )} over {r rSub { size 8{1} } +r rSub { size 8{2} } +R rSub { size 8{"load"} } } } } {} flows.

The diagram shows a closed circuit containing series connection of two cells of e m f script E sub one and internal resistance r sub one and e m f script E sub two and internal resistance r sub two. The positive end of E sub one is connected to the positive end of E sub two.
Figure 21.17 These two voltage sources are connected in series with their emfs in opposition. Current flows in the direction of the greater emf and is limited to I=emf1emf2r1+r2I=emf1emf2r1+r2 size 12{I= { { left ("emf" rSub { size 8{1} } - "emf" rSub { size 8{2} } right )} over {r rSub { size 8{1} } +r rSub { size 8{2} } } } } {} by the sum of the internal resistances. (Note that each emf is represented by script E in the figure.) A battery charger connected to a battery is an example of such a connection. The charger must have a larger emf than the battery to reverse current through it.
Part a shows a flashlight glowing when connected to two cells joined in series with the positive end of one cell connected to the negative end of the other. Part b shows the schematic circuit for part a. There is a series combination of two cells of e m f script E sub one and internal resistance r sub one and e m f script E sub two and internal resistance r sub two connected to a load resistor R sub load.
Figure 21.18 This schematic represents a flashlight with two cells (voltage sources) and a single bulb (load resistance) in series. The current that flows is I=emf1+emf2r1+r2+RloadI=emf1+emf2r1+r2+Rload size 12{I= { { left ("emf" rSub { size 8{1} } - "emf" rSub { size 8{2} } right )} over {r rSub { size 8{1} } +r rSub { size 8{2} } +R rSub { size 8{"load"} } } } } {}. (Note that each emf is represented by script E in the figure.)

Take-Home Experiment: Flashlight Batteries

Find a flashlight that uses several batteries and find new and old batteries. Based on the discussions in this module, predict the brightness of the flashlight when different combinations of batteries are used. Do your predictions match what you observe? Now place new batteries in the flashlight and leave the flashlight switched on for several hours. Is the flashlight still quite bright? Do the same with the old batteries. Is the flashlight as bright when left on for the same length of time with old and new batteries? What does this say for the case when you are limited in the number of available new batteries?

Figure 21.19 shows two voltage sources with identical emfs in parallel and connected to a load resistance. In this simple case, the total emf is the same as the individual emfs. But the total internal resistance is reduced, since the internal resistances are in parallel. The parallel connection thus can produce a larger current.

Here, I=emfrtot+RloadI=emfrtot+Rload size 12{I= { {"emf"} over { left (r rSub { size 8{"tot"} } +R rSub { size 8{"load"} } right )} } } {} flows through the load, and rtotrtot size 12{r rSub { size 8{"tot"} } } {} is less than those of the individual batteries. For example, some diesel-powered cars use two 12-V batteries in parallel; they produce a total emf of 12 V but can deliver the larger current needed to start a diesel engine.

Part a shows parallel combination of two cells of e m f script E and internal resistance r sub one and internal resistance r sub two connected to a load resistor R sub load. Part b shows the combination of e m f of part a. The circuit has a cell of e m f script E with an internal resistance r sub tot and a load resistor R sub load. The resistance r sub tot is less than either r sub one or r sub two.
Figure 21.19 Two voltage sources with identical emfs (each labeled by script E) connected in parallel produce the same emf but have a smaller total internal resistance than the individual sources. Parallel combinations are often used to deliver more current. Here I=emfrtot+RloadI=emfrtot+Rload size 12{I= { {"emf"} over { left (r rSub { size 8{"tot"} } +R rSub { size 8{"load"} } right )} } } {} flows through the load.

Animals as Electrical Detectors

A number of animals both produce and detect electrical signals. Fish, sharks, platypuses, and echidnas (spiny anteaters) all detect electric fields generated by nerve activity in prey. Electric eels produce their own emf through biological cells (electric organs) called electroplaques, which are arranged in both series and parallel as a set of batteries.

Electroplaques are flat, disk-like cells; those of the electric eel have a voltage of 0.15 V across each one. These cells are usually located toward the head or tail of the animal, although in the case of the electric eel, they are found along the entire body. The electroplaques in the South American eel are arranged in 140 rows, with each row stretching horizontally along the body and containing 5,000 electroplaques. This can yield an emf of approximately 600 V, and a current of 1 A—deadly.

The mechanism for detection of external electric fields is similar to that for producing nerve signals in the cell through depolarization and repolarization—the movement of ions across the cell membrane. Within the fish, weak electric fields in the water produce a current in a gel-filled canal that runs from the skin to sensing cells, producing a nerve signal. The Australian platypus, one of the very few mammals that lay eggs, can detect fields of 30 mVmmVm size 12{ { {"mV"} over {m} } } {}, while sharks have been found to be able to sense a field in their snouts as small as 100 mVmmVm size 12{ { {"mV"} over {m} } } {} (Figure 21.20). Electric eels use their own electric fields produced by the electroplaques to stun their prey or enemies.

A photograph of a large gray tiger shark that swims along the bottom of a saltwater tank full of smaller fish at the Minnesota Zoo.
Figure 21.20 Sand tiger sharks (Carcharias taurus), like this one at the Minnesota Zoo, use electroreceptors in their snouts to locate prey. (credit: Jim Winstead, Flickr)

Solar Cell Arrays

Another example dealing with multiple voltage sources is that of combinations of solar cells—wired in both series and parallel combinations to yield a desired voltage and current. Photovoltaic generation (PV), the conversion of sunlight directly into electricity, is based upon the photoelectric effect, in which photons hitting the surface of a solar cell create an electric current in the cell.

Most solar cells are made from pure silicon—either as single-crystal silicon, or as a thin film of silicon deposited upon a glass or metal backing. Most single cells have a voltage output of about 0.5 V, while the current output is a function of the amount of sunlight upon the cell (the incident solar radiation—the insolation). Under bright noon sunlight, a current of about 100 mA/cm2100 mA/cm2 size 12{"100"" mA/cm" rSup { size 8{2} } } {} of cell surface area is produced by typical single-crystal cells.

Individual solar cells are connected electrically in modules to meet electrical-energy needs. They can be wired together in series or in parallel—connected like the batteries discussed earlier. A solar-cell array or module usually consists of between 36 and 72 cells, with a power output of 50 W to 140 W.

The output of the solar cells is direct current. For most uses in a home, AC is required, so a device called an inverter must be used to convert the DC to AC. Any extra output can then be passed on to the outside electrical grid for sale to the utility.

Take-Home Experiment: Virtual Solar Cells

One can assemble a “virtual” solar cell array by using playing cards, or business or index cards, to represent a solar cell. Combinations of these cards in series and/or parallel can model the required array output. Assume each card has an output of 0.5 V and a current (under bright light) of 2 A. Using your cards, how would you arrange them to produce an output of 6 A at 3 V (18 W)?

Suppose you were told that you needed only 18 W (but no required voltage). Would you need more cards to make this arrangement?

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information Citation information

© Jun 21, 2012 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.