Skip to Content
OpenStax Logo
College Physics

19.6 Capacitors in Series and Parallel

College Physics19.6 Capacitors in Series and Parallel
  1. Preface
  2. 1 Introduction: The Nature of Science and Physics
    1. Introduction to Science and the Realm of Physics, Physical Quantities, and Units
    2. 1.1 Physics: An Introduction
    3. 1.2 Physical Quantities and Units
    4. 1.3 Accuracy, Precision, and Significant Figures
    5. 1.4 Approximation
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
  3. 2 Kinematics
    1. Introduction to One-Dimensional Kinematics
    2. 2.1 Displacement
    3. 2.2 Vectors, Scalars, and Coordinate Systems
    4. 2.3 Time, Velocity, and Speed
    5. 2.4 Acceleration
    6. 2.5 Motion Equations for Constant Acceleration in One Dimension
    7. 2.6 Problem-Solving Basics for One-Dimensional Kinematics
    8. 2.7 Falling Objects
    9. 2.8 Graphical Analysis of One-Dimensional Motion
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  4. 3 Two-Dimensional Kinematics
    1. Introduction to Two-Dimensional Kinematics
    2. 3.1 Kinematics in Two Dimensions: An Introduction
    3. 3.2 Vector Addition and Subtraction: Graphical Methods
    4. 3.3 Vector Addition and Subtraction: Analytical Methods
    5. 3.4 Projectile Motion
    6. 3.5 Addition of Velocities
    7. Glossary
    8. Section Summary
    9. Conceptual Questions
    10. Problems & Exercises
  5. 4 Dynamics: Force and Newton's Laws of Motion
    1. Introduction to Dynamics: Newton’s Laws of Motion
    2. 4.1 Development of Force Concept
    3. 4.2 Newton’s First Law of Motion: Inertia
    4. 4.3 Newton’s Second Law of Motion: Concept of a System
    5. 4.4 Newton’s Third Law of Motion: Symmetry in Forces
    6. 4.5 Normal, Tension, and Other Examples of Forces
    7. 4.6 Problem-Solving Strategies
    8. 4.7 Further Applications of Newton’s Laws of Motion
    9. 4.8 Extended Topic: The Four Basic Forces—An Introduction
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  6. 5 Further Applications of Newton's Laws: Friction, Drag, and Elasticity
    1. Introduction: Further Applications of Newton’s Laws
    2. 5.1 Friction
    3. 5.2 Drag Forces
    4. 5.3 Elasticity: Stress and Strain
    5. Glossary
    6. Section Summary
    7. Conceptual Questions
    8. Problems & Exercises
  7. 6 Uniform Circular Motion and Gravitation
    1. Introduction to Uniform Circular Motion and Gravitation
    2. 6.1 Rotation Angle and Angular Velocity
    3. 6.2 Centripetal Acceleration
    4. 6.3 Centripetal Force
    5. 6.4 Fictitious Forces and Non-inertial Frames: The Coriolis Force
    6. 6.5 Newton’s Universal Law of Gravitation
    7. 6.6 Satellites and Kepler’s Laws: An Argument for Simplicity
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  8. 7 Work, Energy, and Energy Resources
    1. Introduction to Work, Energy, and Energy Resources
    2. 7.1 Work: The Scientific Definition
    3. 7.2 Kinetic Energy and the Work-Energy Theorem
    4. 7.3 Gravitational Potential Energy
    5. 7.4 Conservative Forces and Potential Energy
    6. 7.5 Nonconservative Forces
    7. 7.6 Conservation of Energy
    8. 7.7 Power
    9. 7.8 Work, Energy, and Power in Humans
    10. 7.9 World Energy Use
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  9. 8 Linear Momentum and Collisions
    1. Introduction to Linear Momentum and Collisions
    2. 8.1 Linear Momentum and Force
    3. 8.2 Impulse
    4. 8.3 Conservation of Momentum
    5. 8.4 Elastic Collisions in One Dimension
    6. 8.5 Inelastic Collisions in One Dimension
    7. 8.6 Collisions of Point Masses in Two Dimensions
    8. 8.7 Introduction to Rocket Propulsion
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  10. 9 Statics and Torque
    1. Introduction to Statics and Torque
    2. 9.1 The First Condition for Equilibrium
    3. 9.2 The Second Condition for Equilibrium
    4. 9.3 Stability
    5. 9.4 Applications of Statics, Including Problem-Solving Strategies
    6. 9.5 Simple Machines
    7. 9.6 Forces and Torques in Muscles and Joints
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  11. 10 Rotational Motion and Angular Momentum
    1. Introduction to Rotational Motion and Angular Momentum
    2. 10.1 Angular Acceleration
    3. 10.2 Kinematics of Rotational Motion
    4. 10.3 Dynamics of Rotational Motion: Rotational Inertia
    5. 10.4 Rotational Kinetic Energy: Work and Energy Revisited
    6. 10.5 Angular Momentum and Its Conservation
    7. 10.6 Collisions of Extended Bodies in Two Dimensions
    8. 10.7 Gyroscopic Effects: Vector Aspects of Angular Momentum
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  12. 11 Fluid Statics
    1. Introduction to Fluid Statics
    2. 11.1 What Is a Fluid?
    3. 11.2 Density
    4. 11.3 Pressure
    5. 11.4 Variation of Pressure with Depth in a Fluid
    6. 11.5 Pascal’s Principle
    7. 11.6 Gauge Pressure, Absolute Pressure, and Pressure Measurement
    8. 11.7 Archimedes’ Principle
    9. 11.8 Cohesion and Adhesion in Liquids: Surface Tension and Capillary Action
    10. 11.9 Pressures in the Body
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  13. 12 Fluid Dynamics and Its Biological and Medical Applications
    1. Introduction to Fluid Dynamics and Its Biological and Medical Applications
    2. 12.1 Flow Rate and Its Relation to Velocity
    3. 12.2 Bernoulli’s Equation
    4. 12.3 The Most General Applications of Bernoulli’s Equation
    5. 12.4 Viscosity and Laminar Flow; Poiseuille’s Law
    6. 12.5 The Onset of Turbulence
    7. 12.6 Motion of an Object in a Viscous Fluid
    8. 12.7 Molecular Transport Phenomena: Diffusion, Osmosis, and Related Processes
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  14. 13 Temperature, Kinetic Theory, and the Gas Laws
    1. Introduction to Temperature, Kinetic Theory, and the Gas Laws
    2. 13.1 Temperature
    3. 13.2 Thermal Expansion of Solids and Liquids
    4. 13.3 The Ideal Gas Law
    5. 13.4 Kinetic Theory: Atomic and Molecular Explanation of Pressure and Temperature
    6. 13.5 Phase Changes
    7. 13.6 Humidity, Evaporation, and Boiling
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  15. 14 Heat and Heat Transfer Methods
    1. Introduction to Heat and Heat Transfer Methods
    2. 14.1 Heat
    3. 14.2 Temperature Change and Heat Capacity
    4. 14.3 Phase Change and Latent Heat
    5. 14.4 Heat Transfer Methods
    6. 14.5 Conduction
    7. 14.6 Convection
    8. 14.7 Radiation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  16. 15 Thermodynamics
    1. Introduction to Thermodynamics
    2. 15.1 The First Law of Thermodynamics
    3. 15.2 The First Law of Thermodynamics and Some Simple Processes
    4. 15.3 Introduction to the Second Law of Thermodynamics: Heat Engines and Their Efficiency
    5. 15.4 Carnot’s Perfect Heat Engine: The Second Law of Thermodynamics Restated
    6. 15.5 Applications of Thermodynamics: Heat Pumps and Refrigerators
    7. 15.6 Entropy and the Second Law of Thermodynamics: Disorder and the Unavailability of Energy
    8. 15.7 Statistical Interpretation of Entropy and the Second Law of Thermodynamics: The Underlying Explanation
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  17. 16 Oscillatory Motion and Waves
    1. Introduction to Oscillatory Motion and Waves
    2. 16.1 Hooke’s Law: Stress and Strain Revisited
    3. 16.2 Period and Frequency in Oscillations
    4. 16.3 Simple Harmonic Motion: A Special Periodic Motion
    5. 16.4 The Simple Pendulum
    6. 16.5 Energy and the Simple Harmonic Oscillator
    7. 16.6 Uniform Circular Motion and Simple Harmonic Motion
    8. 16.7 Damped Harmonic Motion
    9. 16.8 Forced Oscillations and Resonance
    10. 16.9 Waves
    11. 16.10 Superposition and Interference
    12. 16.11 Energy in Waves: Intensity
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
  18. 17 Physics of Hearing
    1. Introduction to the Physics of Hearing
    2. 17.1 Sound
    3. 17.2 Speed of Sound, Frequency, and Wavelength
    4. 17.3 Sound Intensity and Sound Level
    5. 17.4 Doppler Effect and Sonic Booms
    6. 17.5 Sound Interference and Resonance: Standing Waves in Air Columns
    7. 17.6 Hearing
    8. 17.7 Ultrasound
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  19. 18 Electric Charge and Electric Field
    1. Introduction to Electric Charge and Electric Field
    2. 18.1 Static Electricity and Charge: Conservation of Charge
    3. 18.2 Conductors and Insulators
    4. 18.3 Coulomb’s Law
    5. 18.4 Electric Field: Concept of a Field Revisited
    6. 18.5 Electric Field Lines: Multiple Charges
    7. 18.6 Electric Forces in Biology
    8. 18.7 Conductors and Electric Fields in Static Equilibrium
    9. 18.8 Applications of Electrostatics
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  20. 19 Electric Potential and Electric Field
    1. Introduction to Electric Potential and Electric Energy
    2. 19.1 Electric Potential Energy: Potential Difference
    3. 19.2 Electric Potential in a Uniform Electric Field
    4. 19.3 Electrical Potential Due to a Point Charge
    5. 19.4 Equipotential Lines
    6. 19.5 Capacitors and Dielectrics
    7. 19.6 Capacitors in Series and Parallel
    8. 19.7 Energy Stored in Capacitors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  21. 20 Electric Current, Resistance, and Ohm's Law
    1. Introduction to Electric Current, Resistance, and Ohm's Law
    2. 20.1 Current
    3. 20.2 Ohm’s Law: Resistance and Simple Circuits
    4. 20.3 Resistance and Resistivity
    5. 20.4 Electric Power and Energy
    6. 20.5 Alternating Current versus Direct Current
    7. 20.6 Electric Hazards and the Human Body
    8. 20.7 Nerve Conduction–Electrocardiograms
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  22. 21 Circuits and DC Instruments
    1. Introduction to Circuits and DC Instruments
    2. 21.1 Resistors in Series and Parallel
    3. 21.2 Electromotive Force: Terminal Voltage
    4. 21.3 Kirchhoff’s Rules
    5. 21.4 DC Voltmeters and Ammeters
    6. 21.5 Null Measurements
    7. 21.6 DC Circuits Containing Resistors and Capacitors
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  23. 22 Magnetism
    1. Introduction to Magnetism
    2. 22.1 Magnets
    3. 22.2 Ferromagnets and Electromagnets
    4. 22.3 Magnetic Fields and Magnetic Field Lines
    5. 22.4 Magnetic Field Strength: Force on a Moving Charge in a Magnetic Field
    6. 22.5 Force on a Moving Charge in a Magnetic Field: Examples and Applications
    7. 22.6 The Hall Effect
    8. 22.7 Magnetic Force on a Current-Carrying Conductor
    9. 22.8 Torque on a Current Loop: Motors and Meters
    10. 22.9 Magnetic Fields Produced by Currents: Ampere’s Law
    11. 22.10 Magnetic Force between Two Parallel Conductors
    12. 22.11 More Applications of Magnetism
    13. Glossary
    14. Section Summary
    15. Conceptual Questions
    16. Problems & Exercises
  24. 23 Electromagnetic Induction, AC Circuits, and Electrical Technologies
    1. Introduction to Electromagnetic Induction, AC Circuits and Electrical Technologies
    2. 23.1 Induced Emf and Magnetic Flux
    3. 23.2 Faraday’s Law of Induction: Lenz’s Law
    4. 23.3 Motional Emf
    5. 23.4 Eddy Currents and Magnetic Damping
    6. 23.5 Electric Generators
    7. 23.6 Back Emf
    8. 23.7 Transformers
    9. 23.8 Electrical Safety: Systems and Devices
    10. 23.9 Inductance
    11. 23.10 RL Circuits
    12. 23.11 Reactance, Inductive and Capacitive
    13. 23.12 RLC Series AC Circuits
    14. Glossary
    15. Section Summary
    16. Conceptual Questions
    17. Problems & Exercises
  25. 24 Electromagnetic Waves
    1. Introduction to Electromagnetic Waves
    2. 24.1 Maxwell’s Equations: Electromagnetic Waves Predicted and Observed
    3. 24.2 Production of Electromagnetic Waves
    4. 24.3 The Electromagnetic Spectrum
    5. 24.4 Energy in Electromagnetic Waves
    6. Glossary
    7. Section Summary
    8. Conceptual Questions
    9. Problems & Exercises
  26. 25 Geometric Optics
    1. Introduction to Geometric Optics
    2. 25.1 The Ray Aspect of Light
    3. 25.2 The Law of Reflection
    4. 25.3 The Law of Refraction
    5. 25.4 Total Internal Reflection
    6. 25.5 Dispersion: The Rainbow and Prisms
    7. 25.6 Image Formation by Lenses
    8. 25.7 Image Formation by Mirrors
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  27. 26 Vision and Optical Instruments
    1. Introduction to Vision and Optical Instruments
    2. 26.1 Physics of the Eye
    3. 26.2 Vision Correction
    4. 26.3 Color and Color Vision
    5. 26.4 Microscopes
    6. 26.5 Telescopes
    7. 26.6 Aberrations
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  28. 27 Wave Optics
    1. Introduction to Wave Optics
    2. 27.1 The Wave Aspect of Light: Interference
    3. 27.2 Huygens's Principle: Diffraction
    4. 27.3 Young’s Double Slit Experiment
    5. 27.4 Multiple Slit Diffraction
    6. 27.5 Single Slit Diffraction
    7. 27.6 Limits of Resolution: The Rayleigh Criterion
    8. 27.7 Thin Film Interference
    9. 27.8 Polarization
    10. 27.9 *Extended Topic* Microscopy Enhanced by the Wave Characteristics of Light
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  29. 28 Special Relativity
    1. Introduction to Special Relativity
    2. 28.1 Einstein’s Postulates
    3. 28.2 Simultaneity And Time Dilation
    4. 28.3 Length Contraction
    5. 28.4 Relativistic Addition of Velocities
    6. 28.5 Relativistic Momentum
    7. 28.6 Relativistic Energy
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  30. 29 Introduction to Quantum Physics
    1. Introduction to Quantum Physics
    2. 29.1 Quantization of Energy
    3. 29.2 The Photoelectric Effect
    4. 29.3 Photon Energies and the Electromagnetic Spectrum
    5. 29.4 Photon Momentum
    6. 29.5 The Particle-Wave Duality
    7. 29.6 The Wave Nature of Matter
    8. 29.7 Probability: The Heisenberg Uncertainty Principle
    9. 29.8 The Particle-Wave Duality Reviewed
    10. Glossary
    11. Section Summary
    12. Conceptual Questions
    13. Problems & Exercises
  31. 30 Atomic Physics
    1. Introduction to Atomic Physics
    2. 30.1 Discovery of the Atom
    3. 30.2 Discovery of the Parts of the Atom: Electrons and Nuclei
    4. 30.3 Bohr’s Theory of the Hydrogen Atom
    5. 30.4 X Rays: Atomic Origins and Applications
    6. 30.5 Applications of Atomic Excitations and De-Excitations
    7. 30.6 The Wave Nature of Matter Causes Quantization
    8. 30.7 Patterns in Spectra Reveal More Quantization
    9. 30.8 Quantum Numbers and Rules
    10. 30.9 The Pauli Exclusion Principle
    11. Glossary
    12. Section Summary
    13. Conceptual Questions
    14. Problems & Exercises
  32. 31 Radioactivity and Nuclear Physics
    1. Introduction to Radioactivity and Nuclear Physics
    2. 31.1 Nuclear Radioactivity
    3. 31.2 Radiation Detection and Detectors
    4. 31.3 Substructure of the Nucleus
    5. 31.4 Nuclear Decay and Conservation Laws
    6. 31.5 Half-Life and Activity
    7. 31.6 Binding Energy
    8. 31.7 Tunneling
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  33. 32 Medical Applications of Nuclear Physics
    1. Introduction to Applications of Nuclear Physics
    2. 32.1 Medical Imaging and Diagnostics
    3. 32.2 Biological Effects of Ionizing Radiation
    4. 32.3 Therapeutic Uses of Ionizing Radiation
    5. 32.4 Food Irradiation
    6. 32.5 Fusion
    7. 32.6 Fission
    8. 32.7 Nuclear Weapons
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  34. 33 Particle Physics
    1. Introduction to Particle Physics
    2. 33.1 The Yukawa Particle and the Heisenberg Uncertainty Principle Revisited
    3. 33.2 The Four Basic Forces
    4. 33.3 Accelerators Create Matter from Energy
    5. 33.4 Particles, Patterns, and Conservation Laws
    6. 33.5 Quarks: Is That All There Is?
    7. 33.6 GUTs: The Unification of Forces
    8. Glossary
    9. Section Summary
    10. Conceptual Questions
    11. Problems & Exercises
  35. 34 Frontiers of Physics
    1. Introduction to Frontiers of Physics
    2. 34.1 Cosmology and Particle Physics
    3. 34.2 General Relativity and Quantum Gravity
    4. 34.3 Superstrings
    5. 34.4 Dark Matter and Closure
    6. 34.5 Complexity and Chaos
    7. 34.6 High-temperature Superconductors
    8. 34.7 Some Questions We Know to Ask
    9. Glossary
    10. Section Summary
    11. Conceptual Questions
    12. Problems & Exercises
  36. A | Atomic Masses
  37. B | Selected Radioactive Isotopes
  38. C | Useful Information
  39. D | Glossary of Key Symbols and Notation
  40. Index

Several capacitors may be connected together in a variety of applications. Multiple connections of capacitors act like a single equivalent capacitor. The total capacitance of this equivalent single capacitor depends both on the individual capacitors and how they are connected. There are two simple and common types of connections, called series and parallel, for which we can easily calculate the total capacitance. Certain more complicated connections can also be related to combinations of series and parallel.

Capacitance in Series

Figure 19.20(a) shows a series connection of three capacitors with a voltage applied. As for any capacitor, the capacitance of the combination is related to charge and voltage by C=QVC=QV size 12{C= { {Q} over {V} } } {}.

Note in Figure 19.20 that opposite charges of magnitude QQ size 12{Q} {} flow to either side of the originally uncharged combination of capacitors when the voltage VV size 12{V} {} is applied. Conservation of charge requires that equal-magnitude charges be created on the plates of the individual capacitors, since charge is only being separated in these originally neutral devices. The end result is that the combination resembles a single capacitor with an effective plate separation greater than that of the individual capacitors alone. (See Figure 19.20(b).) Larger plate separation means smaller capacitance. It is a general feature of series connections of capacitors that the total capacitance is less than any of the individual capacitances.

When capacitors are connected in series, an equivalent capacitor would have a plate separation that is greater than that of any individual capacitor. Hence the series connections produce a resultant capacitance less than that of the individual capacitors.
Figure 19.20 (a) Capacitors connected in series. The magnitude of the charge on each plate is Q Q . (b) An equivalent capacitor has a larger plate separation dd size 12{d} {}. Series connections produce a total capacitance that is less than that of any of the individual capacitors.

We can find an expression for the total capacitance by considering the voltage across the individual capacitors shown in Figure 19.20. Solving C=QVC=QV size 12{C= { {Q} over {V} } } {} for VV size 12{V} {} gives V=QCV=QC size 12{V= { {Q} over {C} } } {}. The voltages across the individual capacitors are thus V1=QC1V1=QC1 size 12{ {V} rSub { size 8{1} } = { {Q} over { {C} rSub { size 8{1} } } } } {}, V2=QC2V2=QC2 size 12{ {V} rSub { size 8{2} } = { {Q} over { {C} rSub { size 8{2} } } } } {}, and V3=QC3V3=QC3 size 12{ {V} rSub { size 8{3} } = { {Q} over { {C} rSub { size 8{3} } } } } {}. The total voltage is the sum of the individual voltages:

V=V1+V2+V3.V=V1+V2+V3. size 12{V= {V} rSub { size 8{1} } + {V} rSub { size 8{2} } + {V} rSub { size 8{3} } } {}
19.60

Now, calling the total capacitance CSCS size 12{C rSub { size 8{S} } } {} for series capacitance, consider that

V = Q C S = V 1 + V 2 + V 3 . V = Q C S = V 1 + V 2 + V 3 . size 12{V= { {Q} over { {C} rSub { size 8{S} } } } = {V} rSub { size 8{1} } + {V} rSub { size 8{2} } + {V} rSub { size 8{3} } } {}
19.61

Entering the expressions for V1V1 size 12{V rSub { size 8{1} } } {}, V2V2 size 12{V rSub { size 8{2} } } {}, and V3V3 size 12{V rSub { size 8{3} } } {}, we get

QCS=QC1+QC2+QC3.QCS=QC1+QC2+QC3. size 12{ { {Q} over { {C} rSub { size 8{S} } } } = { {Q} over { {C} rSub { size 8{1} } } } + { {Q} over { {C} rSub { size 8{2} } } } + { {Q} over { {C} rSub { size 8{3} } } } } {}
19.62

Canceling the QQ size 12{Q} {}s, we obtain the equation for the total capacitance in series CSCS size 12{ {C} rSub { size 8{S} } } {} to be

1CS=1C1+1C2+1C3+...,1CS=1C1+1C2+1C3+..., size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } + "." "." "." } {}
19.63

where “...” indicates that the expression is valid for any number of capacitors connected in series. An expression of this form always results in a total capacitance CSCS size 12{ {C} rSub { size 8{S} } } {} that is less than any of the individual capacitances C1C1 size 12{ {C} rSub { size 8{1} } } {}, C2C2 size 12{ {C} rSub { size 8{2} } } {}, ..., as the next example illustrates.

Total Capacitance in Series, C s C s size 12{ {C} rSub { size 8{S} } } {}

Total capacitance in series: 1CS=1C1+1C2+1C3+...1CS=1C1+1C2+1C3+... size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } + "." "." "." } {}

Example 19.9 What Is the Series Capacitance?

Find the total capacitance for three capacitors connected in series, given their individual capacitances are 1.000, 5.000, and 8.000 µFµF size 12{mF} {}.

Strategy

With the given information, the total capacitance can be found using the equation for capacitance in series.

Solution

Entering the given capacitances into the expression for 1CS1CS size 12{ { {1} over { {C} rSub { size 8{S} } } } } {} gives 1CS=1C1+1C2+1C31CS=1C1+1C2+1C3 size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } } {}.

1 C S = 1 1 . 000 µF + 1 5 . 000 µF + 1 8 . 000 µF = 1 . 325 µF 1 C S = 1 1 . 000 µF + 1 5 . 000 µF + 1 8 . 000 µF = 1 . 325 µF size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over {1 "." "00" mF} } + { {1} over {5 "." "00" mF} } + { {1} over {8 "." "00" mF} } = { {1 "." "325"} over {mF} } } {}
19.64

Inverting to find CSCS size 12{C rSub { size 8{S} } } {} yields {}CS=µF1.325=0.755 µFCS=µF1.325=0.755 µF size 12{ {C} rSub { size 8{S} } = { {mF} over {1 "." "325"} } =0 "." "755" mF} {}.

Discussion

The total series capacitance CsCs size 12{ {C} rSub { size 8{S} } } {} is less than the smallest individual capacitance, as promised. In series connections of capacitors, the sum is less than the parts. In fact, it is less than any individual. Note that it is sometimes possible, and more convenient, to solve an equation like the above by finding the least common denominator, which in this case (showing only whole-number calculations) is 40. Thus,

1CS=4040 µF+840 µF+540 µF=5340 µF,1CS=4040 µF+840 µF+540 µF=5340 µF, size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {"40"} over {"40" mF} } + { {8} over {"40" mF} } + { {5} over {"40" mF} } = { {"53"} over {"40" mF} } } {}
19.65

so that

CS=40 µF53=0.755 µF.CS=40 µF53=0.755 µF. size 12{ {C} rSub { size 8{S} } = { {"40" µF} over {"53"} } =0 "." "755" µF} {}
19.66

Capacitors in Parallel

Figure 19.21(a) shows a parallel connection of three capacitors with a voltage applied. Here the total capacitance is easier to find than in the series case. To find the equivalent total capacitance CpCp size 12{ {C} rSub { size 8{p} } } {}, we first note that the voltage across each capacitor is VV size 12{V} {}, the same as that of the source, since they are connected directly to it through a conductor. (Conductors are equipotentials, and so the voltage across the capacitors is the same as that across the voltage source.) Thus the capacitors have the same charges on them as they would have if connected individually to the voltage source. The total charge QQ size 12{Q} {} is the sum of the individual charges:

Q=Q1+Q2+Q3.Q=Q1+Q2+Q3. size 12{Q= {Q} rSub { size 8{1} } + {Q} rSub { size 8{2} } + {Q} rSub { size 8{3} } } {}
19.67
Part a of the figure shows three capacitors connected in parallel to each other and to the applied voltage. The total capacitance when they are connected in parallel is simply the sum of the individual capacitances. Part b of the figure shows the larger equivalent plate area of the capacitors connected in parallel, which in turn can hold more charge than the individual capacitors.
Figure 19.21 (a) Capacitors in parallel. Each is connected directly to the voltage source just as if it were all alone, and so the total capacitance in parallel is just the sum of the individual capacitances. (b) The equivalent capacitor has a larger plate area and can therefore hold more charge than the individual capacitors.

Using the relationship Q=CVQ=CV size 12{Q= ital "CV"} {}, we see that the total charge is Q=CpVQ=CpV size 12{Q= {C} rSub { size 8{p} } V} {}, and the individual charges are Q1=C1VQ1=C1V size 12{ {Q} rSub { size 8{1} } = {C} rSub { size 8{1} } V} {}, Q2=C2VQ2=C2V size 12{ {Q} rSub { size 8{2} } = {C} rSub { size 8{2} } V} {}, and Q3=C3VQ3=C3V size 12{ {Q} rSub { size 8{3} } = {C} rSub { size 8{3} } V} {}. Entering these into the previous equation gives

CpV=C1V+C2V+C3V.CpV=C1V+C2V+C3V. size 12{ {C} rSub { size 8{p} } V= {C} rSub { size 8{1} } V+ {C} rSub { size 8{2} } V+ {C} rSub { size 8{3} } V} {}
19.68

Canceling VV size 12{V} {} from the equation, we obtain the equation for the total capacitance in parallel CpCp size 12{C rSub { size 8{p} } } {}:

Cp=C1+C2+C3+....Cp=C1+C2+C3+.... size 12{ {C} rSub { size 8{p} } = {C} rSub { size 8{1} } + {C} rSub { size 8{2} } + {C} rSub { size 8{3} } + "." "." "." } {}
19.69

Total capacitance in parallel is simply the sum of the individual capacitances. (Again the “...” indicates the expression is valid for any number of capacitors connected in parallel.) So, for example, if the capacitors in the example above were connected in parallel, their capacitance would be

Cp=1.000 µF+5.000 µF+8.000 µF=14.000 µF.Cp=1.000 µF+5.000 µF+8.000 µF=14.000 µF. size 12{ {C} rSub { size 8{p} } =1 "." "00" µF+5 "." "00" µF+8 "." "00" µF="14" "." 0 µF} {}
19.70

The equivalent capacitor for a parallel connection has an effectively larger plate area and, thus, a larger capacitance, as illustrated in Figure 19.21(b).

Total Capacitance in Parallel, CpCp size 12{C rSub { size 8{p} } } {}

Total capacitance in parallel Cp=C1+C2+C3+...Cp=C1+C2+C3+... size 12{ {C} rSub { size 8{p} } = {C} rSub { size 8{1} } + {C} rSub { size 8{2} } + {C} rSub { size 8{3} } + "." "." "." } {}

More complicated connections of capacitors can sometimes be combinations of series and parallel. (See Figure 19.22.) To find the total capacitance of such combinations, we identify series and parallel parts, compute their capacitances, and then find the total.

The first figure has two capacitors, C sub1 and C sub2 in series and the third capacitor C sub 3 is parallel to C sub 1 and C sub 2. The second figure shows C sub S, the equivalent capacitance of C sub 1 and C sub 2, in parallel to C sub 3. The third figure represents the total capacitance of C sub S and C sub 3.
Figure 19.22 (a) This circuit contains both series and parallel connections of capacitors. See Example 19.10 for the calculation of the overall capacitance of the circuit. (b) C1C1 size 12{ {C} rSub { size 8{1} } } {} and C2C2 size 12{ {C} rSub { size 8{2} } } {} are in series; their equivalent capacitance CSCS size 12{ {C} rSub { size 8{S} } } {} is less than either of them. (c) Note that CSCS size 12{ {C} rSub { size 8{S} } } {} is in parallel with C3C3 size 12{ {C} rSub { size 8{3} } } {}. The total capacitance is, thus, the sum of CSCS size 12{ {C} rSub { size 8{S} } } {} and C3C3 size 12{ {C} rSub { size 8{3} } } {}.

Example 19.10 A Mixture of Series and Parallel Capacitance

Find the total capacitance of the combination of capacitors shown in Figure 19.22. Assume the capacitances in Figure 19.22 are known to three decimal places ( C1=1.000 µFC1=1.000 µF, C2=5.000 µFC2=5.000 µF, and C3=8.000 µFC3=8.000 µF), and round your answer to three decimal places.

Strategy

To find the total capacitance, we first identify which capacitors are in series and which are in parallel. Capacitors C1C1 size 12{ {C} rSub { size 8{1} } } {} and C2C2 size 12{ {C} rSub { size 8{2} } } {} are in series. Their combination, labeled CSCS size 12{ {C} rSub { size 8{S} } } {} in the figure, is in parallel with C3C3 size 12{ {C} rSub { size 8{3} } } {}.

Solution

Since C1C1 size 12{ {C} rSub { size 8{1} } } {} and C2C2 size 12{ {C} rSub { size 8{2} } } {} are in series, their total capacitance is given by 1CS=1C1+1C2+1C31CS=1C1+1C2+1C3 size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } + { {1} over { {C} rSub { size 8{3} } } } } {}. Entering their values into the equation gives

1 C S = 1 C 1 + 1 C 2 = 1 1 . 000 μF + 1 5 . 000 μF = 1 . 200 μF . 1 C S = 1 C 1 + 1 C 2 = 1 1 . 000 μF + 1 5 . 000 μF = 1 . 200 μF . size 12{ { {1} over { {C} rSub { size 8{S} } } } = { {1} over { {C} rSub { size 8{1} } } } + { {1} over { {C} rSub { size 8{2} } } } = { {1} over {1 "." "000"" μF"} } + { {1} over {5 "." "000"" μF"} } = { {1 "." "200"} over {"μF"} } } {}
19.71

Inverting gives

CS=0.833 µF.CS=0.833 µF. size 12{ {C} rSub { size 8{S} } =0 "." "833" µF} {}
19.72

This equivalent series capacitance is in parallel with the third capacitor; thus, the total is the sum

C tot = C S + C S = 0 . 833 μF + 8 . 000 μF = 8 . 833 μF. C tot = C S + C S = 0 . 833 μF + 8 . 000 μF = 8 . 833 μF. alignl { stack { size 12{C rSub { size 8{"tot"} } =C rSub { size 8{S} } +C rSub { size 8{S} } } {} # =0 "." "833"" μF "+ 8 "." "000"" μF" {} # =8 "." "833"" μF" {} } } {}
19.73

Discussion

This technique of analyzing the combinations of capacitors piece by piece until a total is obtained can be applied to larger combinations of capacitors.

Citation/Attribution

Want to cite, share, or modify this book? This book is Creative Commons Attribution License 4.0 and you must attribute OpenStax.

Attribution information Citation information

© Jun 21, 2012 OpenStax. Textbook content produced by OpenStax is licensed under a Creative Commons Attribution License 4.0 license. The OpenStax name, OpenStax logo, OpenStax book covers, OpenStax CNX name, and OpenStax CNX logo are not subject to the Creative Commons license and may not be reproduced without the prior and express written consent of Rice University.